CINP's Hanns Hippius International Psychopharmacology Archives at the Psychiatry Clinic of Ludwig Maximilian University in Munich

Collated by Peter Kadar

4(1). Contributions to the Archives

Thomas A. Ban: 1957 The Year of Neuropsychopharmacology

PowerPoint presentation at the annual meeting of the Hungarian Society of Psychopharmacology in October 2008 in Tihany. Although it was not included in the PowerPoint presentation, it was noted that the Collegium Internationale Neuro-Psychopharmacologicum (CINP) was founded on September 2, 1957 in Milan. The PowerPoint presentation was posted on September 19, 2013.

Jacques-Joseph Moreau de Tours (1804-1884)

His dream to use drugs in the study of mental disorders became a realistic goal in the mid-20th century with the introduction of effective drugs for mental illness and the spectrophotofluorimeter.

SPECTROPHOTOFLUORIMETER (1957)

Capability to measure changes in the concentration of neurotransmitter monamines

NEUROPHARMACOLOGY Studies the mode of action of centrally acting drugs

NEUROPSYCHOPHARMACOLOGY Studies the relationship between neuronal and mental events with the use of centrally acting drugs

Abraham Wikler
The Relation of Psychiatry to Pharmacology
(1957)

Studying the mode of action of psychotropic drugs with known therapeutic effects could possibly generate information on the biochemical basis of mental disorders that would guide the development of rational drug treatment and provide the key for bridging the gap between neuronal and mental events.

PROGESS IN NEUROPSYCHOPHARMACOLOGY depends on a continuous dialogue between basic scientists and clinicians

Silvio Garattini

Organization of 1st international Symposium 1957

Ernst Rothlin

Founding president CINP1957 - 1960

Nathan Kline

Chairman 1st WPA symposium 1957

CHLORPROMAZINE

Development

1937 1949	Bovet Laborit	synthesis of first antihistaminic drugs potent sedating effect of promethazine
1950	Guiraud & David	promethazine controls agitation
1951	Charpentier et al	synthesis of CPZ (Dec.11)
1952	Laborit et al	recognition of potential use in psychiatry
1952	Hamon et al	1st patient successfully treated (Feb. 22)
1952	Delay & Deniker	trials at Saint-Anne's start (March 24)
1952	Delay & Deniker	set the stage for introduction (6 papers)
1952	France	Largactil released for use (November)
1953	Other countries	spread around the world (1953-56)

CHLORPROMAZINE

Albert Lasker Award

Henri Laborit

Using it 1st & recognizing its potential for psychiatry

Pierre Deniker

Introducing it into psychiatry & demonstrating its influence on the clinical course of psychosis

Heinz Lehmann

Bringing its full practical significance to the attention of the medical community

Daniel Bovet Nobel Prize in Medicine 1957

RESERPINE

(Rauwolfia serpentina, the snakeroot plant of Ayurvedic medicine)

1949	Rustom Vakil	publication on antihypertensive effect
1952	(Rhone Poulenc	development & release of CPZ for clinical use)
1952	Mueller, Schlittler & Bein	isolation of reserpine from Rauwolfia root
1953	Hakim	Rauwolfia preparations in schizophrenia
1954	Delay et al	effective in mental disorders
1954	Kline	effective in mental disorders
1954	Noce, William & Rapoport	effective in mental disorders
1954	Weber	comparable to CPZ in action
1954	Steck	comparable to CPZ in producing EPS
1954	Freis	Reserpine may induce depression
1955	Mueller et al	Rauwolfia serpentina may induce depression

RESERPINE

Albert Laskar Award 1957

Rustom Vakil

1957

Nathan Kline

Robert Noce

Producing a document that brought Rauwolfia alkaloids into Western medicine Bringing to the attention the value of resperpine in the treatment of nervous and mental disorders Recognizing the potential use of reserpine in the mentally defective

Henry Brill

After one-year large scale use of CPZ & reserpine Brill and Patton in 1957 reported a population fall in New York State Mental Hospitals

IMIPRAMINE (G22 355)

Roland Kuhn

- 1955 Selects dibenzazepine with closest structural & pharmacological resemblance to CPZ from Geigy's chemical library; his expectation to find a clinically similar compound to CPZ was not fulfilled
- 1956 (January 18) notes favorable effects with the substance in a woman with endogenous depression
- 1957 (August 31) the first article on the antidepressant effect of the substance appears in the Swiss Medical Journal; (September 6) presents paper on the antidepressant effect of the substance (based on the treatment of 43 patients) at WPA congress; drug is released for clinical use in Switzerland with the generic name of imipramine and the trade name of Tofranil

IPRONIAZID & MONOAMINE OXIDASE

1937	Blaschko	identification of MAO in tissues
1937	Pugh & Quastel	identification of MAO in brain
1938	Zeller	differentiation of MA, the enzyme
		responsible for the deamination of
		monoamines from DAO
1951	Herbert Fox	synthesis of iproniazid
1952	Selikoff et al.	iproniazid induces euphoria and
		overactivity in some tubercular patients
1952	Flaherty	iproniazid induced euphoria in a patient
1952	Zeller et al	iproniazid inhibits the activity of MAO
1957	Crane	iproniazid is an antidepressant
1957	Loomers et al.	iproniazid is an antidepressant

INSTRUMENTAL TO THE DEVELOPMENT OF NEUROPHARMACOLOGY:

1953 Twarog & Page: demonstration of 5HT in the brain

1954 Vogt: demonstration of NE in the brain

1955 Bowman, Caulfield and Udenfriend: introduction of spectrophotofluorimeter

Sidney Udenfriend

Instrument with a resolution power to detect drug-induced changes in the concentration of monoamine neurotransmitters

WITHIN TWO-YEARS FROM THE TIME OF THE INTRODUCTION OF THE NEW TECHNOLOGY (1955 –1957) THE KEY EXPERIMENTS THAT WERE TO BECOME THE FOUNDATION OF NEUROPSYCHOPHARMACOLOGY WERE COMPLETED

Alfred Pletscher

Parkhurst Shore

Bernard Brodie

Laboratory of Brodie at the NHI, USA

FINDINGS IN THE SERIES OF KEY EXPERIMENTS THAT WERE TO BECOME THE FOUNDATION OF NEUROPSYCHOPHARMACOLOGY

- 1955 Pletscher, Shore & Brodie: decrease in brain 5HT after the administration of reserpine, a substance that can induce depression (sed.& cholinergic stim.)
- 1956 Pletscher: increase in brain 5HT after the administration of iproniazid, a substance that can induce euphoria
- 1956 Besendorf & Pletscher: increase in brain 5HT after the administration of iproniazid
- 1956 Brodie, Pletscher &Shore: only those Rauwolfia alkaloids that deplete 5HT have sedative action
- 1956 Brodie Pletscher & Shore: 5HT has a role in brain function and reserpine's action
- 1956 Pletscher, Shore & Brodie: pre-treatment with iproniazid attenuates reserpine-induced depletion of 5HT
- 1956 Holzbauer and Vogt: decrease in bran NE after the administration of reserpine
- 1957 Carlsson et al: pre-treatment with iproniazid prevents reserpine-induced depletion of catecholamines
- 1957 Pletscher: benzoquinolizines with sedative action release and deplete 5HT

IT WAS ON THE BASIS OF FINDINGS IN THIS SERIES OF EPERIMENTS TOGETHER WITH PRIOR REPORTS ON THE MONOAMINE OXIDASE INHIBITING

(Zeller et al 1952)

Q.

MOOD LIFTING EFFECT OF IPRONIAZID (Flaherty 1952; Selikoff et al 1952) and

MOOD DEPRESSANT EFFECT OF RESERPINE (Freis 1954; Mueller et al 1955)

THAT IN 1957,
A NEW DISCIPLINE NEUROPSYCHOPHARMACOLOGY WAS BORN

SLOW PROGRESS IN THE YEARS THAT FOLLOWED in establishing relationships between neuronal and mental events

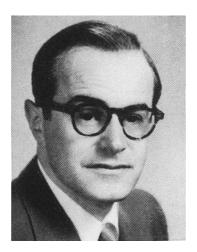
POSSIBLE REASONS OF SLOW PROGRESS

TENUOUS RELATIONSHIPS BETWEEN

BIOCHEMICAL CHANGES AND CLINICAL EFFECTS in the initial series of experiments

MAO INHIBITION AND ANTIDEPRESSANT EFFECT
Salzer and Lurie in 1953 & 1955 reported on the antidepressant effect of isoniazid, the parent substance of iproniazid that has virtually no MAO inhibiting properties.

MONOAMINE DEPLETION AND MOOD DEPRESSANT EFFECT


Davies and Shepherd in 1955 reported that reserpine improved depression in their clinical trial.

However tenuous the relationships between elation and monoamine oxidase inhibition, and depression and monoamine depletion are, they have provided

POSSIBLE REASONS OF SLOW PROGRESS IN THE YEARS THAT FOLLOWED

*Unavailability of psychotropic drugs with well-defined therapeutic effects, one of the essential prerequisites of successful neuropsychopharmacological research.

*The methodology of clinical investigations developed for the detection of drugs with a statistically significantly better chance to be effective in a particular diagnostic population than an inactive pacebo and for the demonstration of their efficacy, is *unsuitable* for the delineation of the therapeutic profile and identification of the treatment responsive subpopulations within the diagnostic groups.

Fritz Freyhan 1956-1959

Focused attention on the pharmacological heterogeneity in responsiveness to the new drugs within the diagnostic categories of classifications based on Kraepelin's nosology, and called for a pharmacological re-evaluation of psychiatric diagnoses

Karl Leonhard
The Classification of Endogenous Psychoses (1957)

Diagnostic concepts based on Kraepelin's nosology, such as schizophrenia and and manic-depressive illness were split into several forms and sub-forms of disease

Frank Fish 1964

opened up a perspective for progress by his findings of :

- 1. differential responsiveness in the six forms of disease diagnosed as schizophrenia in Kreapelinian classifications;
- 2. marked to moderate responsiveness to phenothiazine antipsychotics in 4 of 5 patients in 1 of the 6 forms: "affect-laden paraphrenia."