Level 2 Switch: Primary and Secondary Efficacy Outcomes

N=727; QIDS-SR = Quick Inventory of Depressive Symptomatology—Self-Rated; No significant differences among treatment groups; Rush AJ et al. (2006), N Engl J Med 354(12):1231-1242

Level 2 Medication Augmentation

Level 2 Augment: Primary and Secondary Efficacy Outcomes

N=565; No significant differences among treatment groups; Trivedi MH et al. (2006), N Engl J Med 354(12):1243-1252

Level 2 Cognitive Therapy Studies

STAR*D Treatment Outcomes: Remission Rates CT vs. Medication Augment

MED = medication augmentation; Thase ME et al. (2007), Am J Psychiatry 164(5):739-752

STAR*D Level 2 Treatment Outcomes: Remission Rates CT vs. Medication Switch

Level 3

Treatment Outcomes Remission: Level 3 Switch

Treatment Outcomes Remission: Level 3 Augment

Nierenberg AA et al. (2006), Am J Psychiatry 163(9):1519-1530

Level 4

Treatment Outcomes Remission: Level 4

McGrath PJ et al. (2006), Am J Psychiatry 163(9):1531-1541

STAR-D Remission Rates Across All 4 Levels

Mono = single medication regimen; Augm = combination medication treatment; ¹Trivedi MH et al. (2006), Am J Psychiatry 163:28-40; ²Trivedi MH et al. (2006), N Engl J Med 354:1243-1252; ³Rush AJ et al. (2006), N Engl J Med 354:1231-1242; ⁴Nierenberg AA et al. (2006), Am J Psychiatry 163:1519-1530; ⁵Fava M et al. (2006), Am J Psychiatry 163:1161-1172; ⁶McGrath PJ et al. (2006), Am J Psychiatry 163(9):1531-1541

Level 1 Follow-Up: Relapse Rates

Level 2 Follow-Up

Level 3 Follow-Up

Level 4 Follow-Up

Months in Follow-

Relapse in Follow-Up for Patients Not Remitting to Different Numbers of Acute Treatment Steps

Relapse in Follow-Up for Patients Remitting With Different Numbers of Acute Treatment Steps

Use of ECT in Patients With MDD

- Patients with MDD most likely to benefit from ECT
 - Patients with delusions¹
 - Elderly patients¹
 - Patients presenting with high suicide risk¹
 - Patients with history of poor response to pharmacotherapy²
 - Patients with history of responsiveness to ECT²
 - Patients who choose it²
 - Patients with bipolar disorder³
- ECT is a treatment used for MDD only after multiple treatments have been poorly tolerated or do not yield a therapeutic response

Efficacy of ECT in MDD and TRD

- The acute effect of ECT in MDD is well established
 - Continuation therapy is required to prevent relapses¹
 - In 1 recent study, within 24 weeks of achieving remission (HAMD reduced by 60% and ≤10), 64% of patients had relapsed²
- TRD is predictive of post-ECT relapse
 - Patients with TRD are at high risk for relapse within 1 year following ECT response³
 - Only 32% of patients with TRD maintained their response during the year after ECT treatment⁴

^{1.} Sackeim HA, et al. *JAMA*. 2001;285:1299-1307. 2. Prudic J, et al. *Biol Psychiatry*. 2004;55: 301-312. 3. Sackeim HA, et al. *J Clin Psychopharmacol*. 1990;10:96-104. 4. Sackeim HA, et al. *Arch Gen Psychiatry*. 2000;57:425-434.

Medication Resistance Predicts Relapse Following Successful ECT

- 94% of relapses occurred in the first 6 months
- Patients with TRD were twice as likely to relapse
- Significantly greater relapse in TRD (p=0.01)
 - TRD=68% relapse
 - Non-TRD=36% relapse
- Higher HAMD at end of ECT predicted relapse

Transcranial Magnetic Stimulation

Time-varying electrical current in a coil produces

induces current in neurons and

Modest to moderate effects in Sham Controlled studies 52

TMS Efficacy Yet to Be Established: Meta-analysis of 14 Controlled Trials

Vagus Nerve Stimulation (VNS)

Limitations

- Efficacy data from nonrandomized study
- Surgical procedure
- Cosmesis
- Nonacute antidepressant effect
- MRI contraindication
- Battery Life

VNS Clinical Outcomes: One Year Post-Implantation

HRSD=Hamilton Rating Scale for Depression, MADRS=Montgomery Asberg Depression Rating Scale, CGI-I=Clinical Global Impression-Improvement. HRSD≤10, for remission. Patients received an additional 9 months of VNS after exiting a 3-month acute study.

Deep Brain Stimulation (DBS)

- FDA Approved for Parkinson's and Tremor
- Investigational for OCD, TRD
- Stereotactic Target from MRI
- Two chest-wall Internal Pulse Generators
- Burr holes in skull for electrode placement
- Stimulation parameters programmed by computer, through "wand"

DBS: Subgenual Cingulate (Cg25) Region

Table 2. Hamilton Depression Rating Scale, HDRS-17, Scores over Time for Each Subject

Time	Hamilton Score ^a					
	Pt 1 ^b	Pt 2°	Pt 3 ^b	Pt 4°	Pt 5 ^b	Pt 6 ^b
Preop baseline	29	22	29	24	26	25
1 week postop (acute stimulation)	5	10	12	18	17	12
2 weeks postop (DBS off)	9	13	23	18	22	n/a
1 month	10	14	17	20	22	12
2 months	13	11	12	18	10	12
3 months	2	15	14	25	7	14
4 months	4	9	12	24	6	12
5 months	5	18	7	23	8	n/a
6 months	5	15	9	23	6	12

a Clinical response: decrease HDRS score >50%. Clinical remission: absolute HDRS score <8.</p>

Response in 4 of 6 patients
Response associated with reduction in local and downstream limbic CBF on PET

Mayberg HS et al, Neuron, 2005

Baseline CBF PET All PT vs NC

3 months DBS CBF Change Responders

6 months DBS CBF Change Responders

CBF increases

b Clinical responders.

^c Clinical nonresponders.

Conclusions

- TRD is common and associated with significant morbidity and mortality
- STAR*D highlights the difficulties of achieving and sustaining remission
- Combinations of medications are often needed
- Devices may play an increasing role in highly resistant depression

Post-Lecture Exam Question 1

Limitations of the STAR*D trial include

- 1. Lack of a placebo group
- Patients had the option of not participating in a randomization
- 3. Lack of inclusion of common augmenting agents such as antipsychotics
- 4. All of the above

The chance of achieving acute remission by one or more trials in STAR*D was

- 1, 20%
- 2, 50%
- 3, 80%
- 4. 100%

- Compared to medication augmentation in the STAR*D trial, the addition of cognitive therapy was
- a. significantly less effective
- b. significantly more effective
- c. about equally effective
- d. not studied

Transcranial magnetic stimulation has an effect size in clinical trials that is

- 1. About that of unilateral ECT
- 2. About that of bilateral ECT
- 3. Less than that of ECT
- 4. Greater than that of ECT

The typical time to see effects from vagus nerve stimulation are

- 1. 4-8 weeks
- 2. 12 weeks
- 3. 16-24 weeks
- 4. Greater than 24 weeks

Answers to Pre and Post Lecture Exams

- 1. D
- 2. C
- 3, C
- 4, C
- 5. D