Brain Stimulation Therapies for Treatment Resistant Depression

Linda L. Carpenter, MD Associate Professor, Brown University Dept of Psychiatry Chief, Mood Disorders Program Butler Hospital

Disclosures

Consultant:	Cephalon; GlaxoSmithKline; Johnson & Johnson; Sepracor; Wyeth, Bristol Myers Squibb, Medtronic Pfizer Inc
Full-time Employee:	None
Grant/Research Support:	Cephalon; Corcept Therapeutics; Cyberonics; Medtronic; Merck Co. & Inc; National Institutes of Health (NIH); Pfizer Inc; UCB Pharma; US Dept of the Interior
Speakers' Bureau/ Lecture Honoraria:	AstraZeneca; Cyberonics; Merck & Co., Inc.; Pfizer Inc; Wyeth Pharmaceuticals Inc.
Major Stockholder:	None
Other Financial/ Material Interest:	None

Overview

- Neurotherapeutics Definitions
- Electroconvulsive Therapy (ECT)
- Repetitive Transcranial Magnetic Stimulation (rTMS)
- Magnetic Seizure Therapy (MST)
- Vagus Nerve Stimulation (VNS)
- Deep Brain Stimulation (DBS)

Definitions

Neurotherapeutics

- Treatments for nervous system diseases and disorders
- Pharmacological and other modalities

Neuromodulation

- Therapeutic alteration of nerve activity Central, peripheral or autonomic nervous systems
- **Electrically or pharmacologically**
- **Implanted devices**
- Pain, movement disorders, spasticity, epilepsy, sensory deprivation, urinary incontinence, gastric dysfunction, pancreatitis/visceral disorders

Neurostimulation

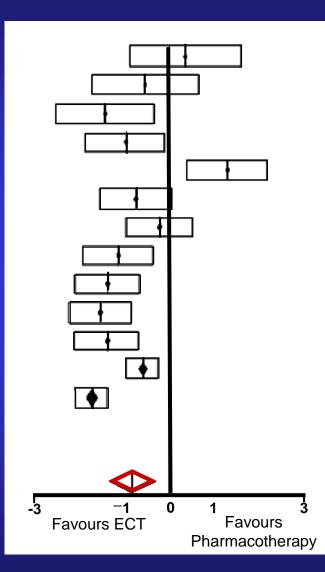
Typically refers to implantable devices with power source, lead wires, electrodes and programming components

Electroconvulsive Therapy (ECT)

- Developed in 1930s
- FDA- Approved Device in 1979 (grand-fathered)
- Brief electrical pulse passed through scalp
- Patient under anesthesia
- Produce seizure on EEG
- Muscle paralysis prevents convulsive movement
- Bilateral or unilateral
- 6 12 treatments
- 2 3 treatments per week

Electroconvulsive Therapy: Effect of ECT versus SHAM

Trial	# of Participants	Standard Effect Size (95%CI)	
Wilson 196	3 12	-1.078 (-2.289 to 0.133)	rii'
West 1981	25	-1.255 (-2.170 to -0.341)	
Lambourn ?	1978 40	-0.170 (-0.940 to 0.600)	
Freeman 19	978 40	-0.629 (-1.264 to 0.006)	
Gregory 19	85 69	-1.418 (-2.012 to -0.824)	
Johnstone	1980 70	-0.739 (-1.253 to -0.224)	
Pooled Fixe	ed Effects	-0.911 (-1.180 to -0.645)	
Pooled Rar	ndom Effects	-0.908 (-1.270 to -0.537)	
			-3 -2 -1 0
			Favours ECT Favo Simula

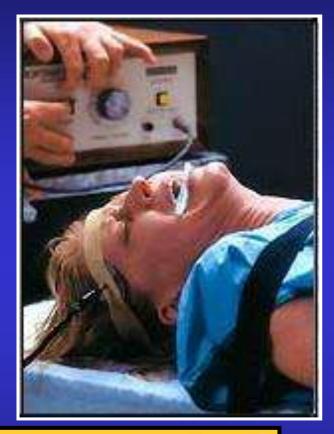

UK ECT Review Group, Lancet 2003; 361: 799-808

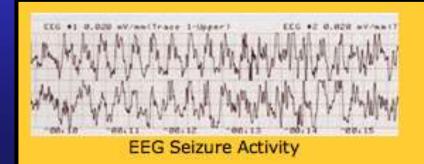
Effect of ECT versus Pharmacotherapy

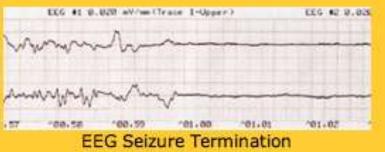
Trial*	# of Participants
Steiner 1978	12
Wilson 1963	12
Davidson 1978	19
McDonald 1966	22
Gangadhar 1982	32
MacSweeney 19	75 27
Dinan 1989	30
Janakiramaiah 2	000 30
Folkerts 1997	40
Herrington 1974	43
Stanley 1962	47
Medical Researc Council 1965	h 204
Greenblatt 1964	242

Pooled	Fixed Eff	ects
Pooled	Random	Effect

Standard Effect Size (95%CI) 0.369 (-0.840 to 1.578) -0.513 (-1.663 to 0.637) -1.389 (-2.449 to -0.328) -0.930 (-1.813 to -0.047) 1.287 (0.406 to 2.169) -0.714 (-1.492 to 0.065) -0.196 (-0.926 to 0.534) -1.095 (-1.863 to -0.328) -1.336 (-2.032 to -0.640) -1.497 (-2.174 to -0.821) -1.342 (-2.047 to -0.638) -0.559 (-0.883 to -0.234) -1.683 (-2.020 to -1.346) -1.010 (-1.170 to -0.856) -0.802 (-1.290 to -0.289)

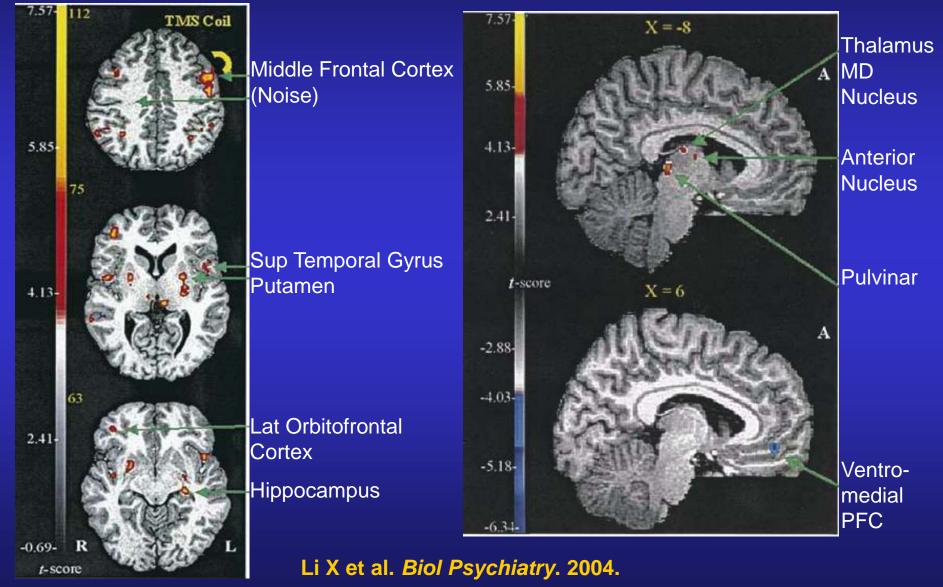

*Other trials are not included: Kendrick 1965, Bruce 1960, Bagadia 1981, Hutchinson 1963, Robin 1962


UK ECT Review Group, Lancet 2003; 361: 799-808

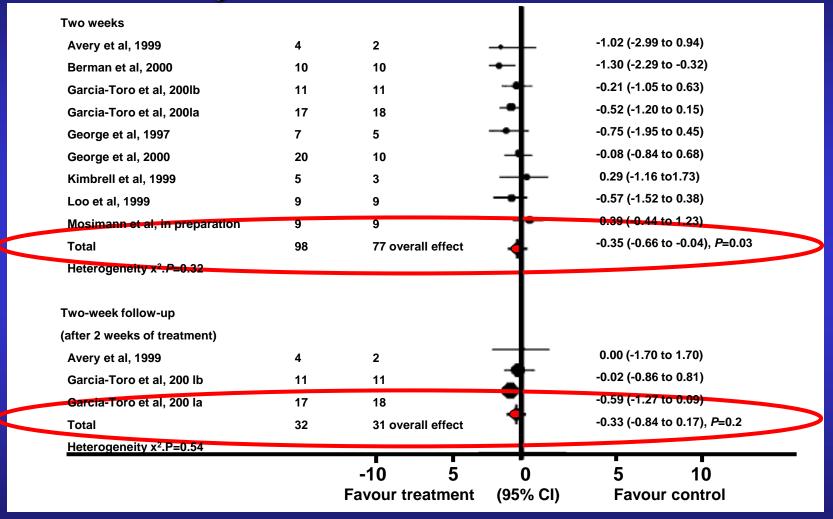

Electroconvulsive Therapy (ECT)

Limitations:

Headache, muscle aches Cognitive Side Effects: Memory Access: Hospital, Often Inpatient Stigma Anesthesia Risks Cost Maintenance: ECT v. meds

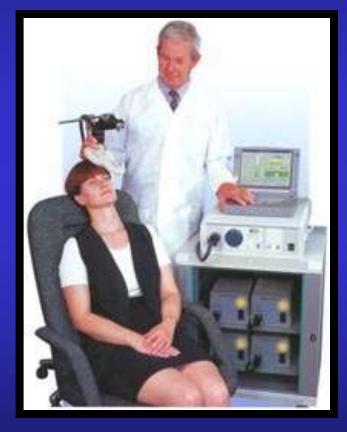


Repetitive Transcranial Magnetic Stimulation (rTMS)


Non-invasive technique **USA:** Investigational **Approved: Canada and Israel** Strong, pulsed (e.g., 2/28 sec) magnetic fields pass through skull unimpeded Coil placed on head in awake patient Induces electrical current in cortex which depolarizes neurons **Greater control over site and** intensity of stimulation (e.g, left **DLPFC)**

Left PFC rTMS Immediately Activates Frontal-Subcortical Neuronal Circuits

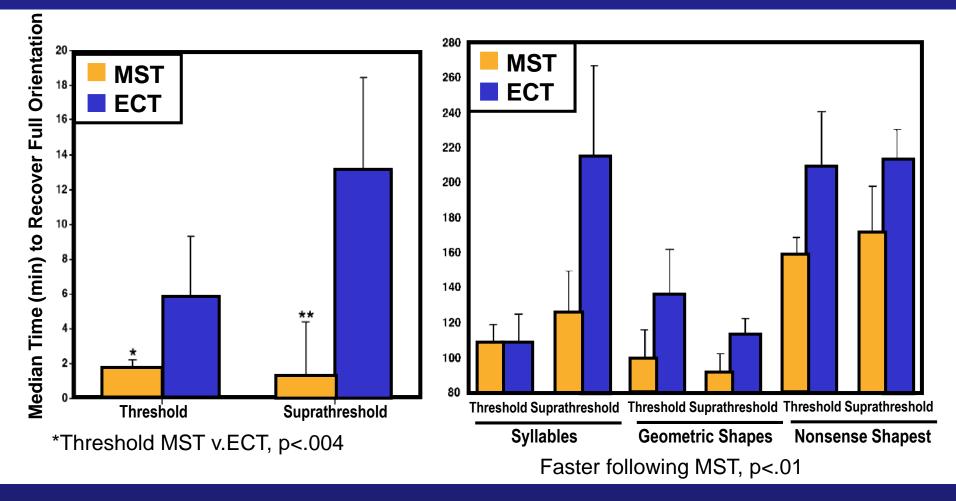
TMS Efficacy Yet to Be Established: Meta-analysis of 14 Controlled Trials


Martin JLR et al. Br J Psychiatry. (2003), 182, 480-491.

Limitations:

Need more controlled trials for efficacy/maintenance data

- Higher intensity stimulation leads to higher risk of motor convulsion
- Best stimulation parameters not known
- Noisy; high-freq clicking
- Neuronal depolarization only extends 2 cm blow scalp effects limited to cortex



Magnetic Seizure Therapy (MST)

Investigational Magnet-induced stimulus (like rTMS) **High Intensity Target "antidepressant regions" Fewer side effects** 3 sessions/week Same as ECT Anesthesia **Tonic clonic seizure Monitor EEG, vitals**

MST: Shorter Period of Post-Ictal Disorientation and Inattention

Lisanby SH et al. Neuropsychopharmacology. 2003.

Vagus Nerve Stimulation (VNS)

- FDA approved for epilepsy;
 FDA approved for TRD July, 2005
- Implanted in over 30,000 patients worldwide (over 79,000 patient years)
- Pulse generator implanted in left chest wall area, connected to leads attached to left vagus nerve
- Mild electrical pulses applied to CN X for transmission to the brain

Vagus Nerve Stimulation (VNS)

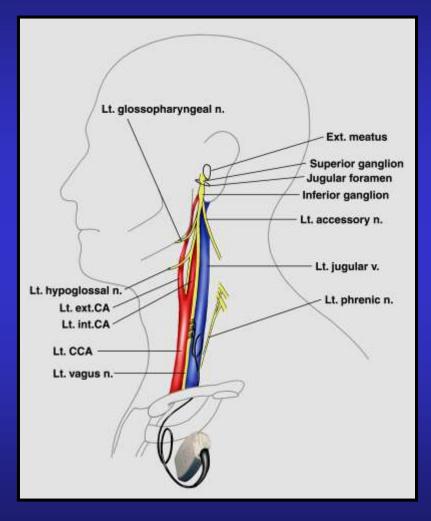
Intermittent stimulation

30 sec on/5 min off

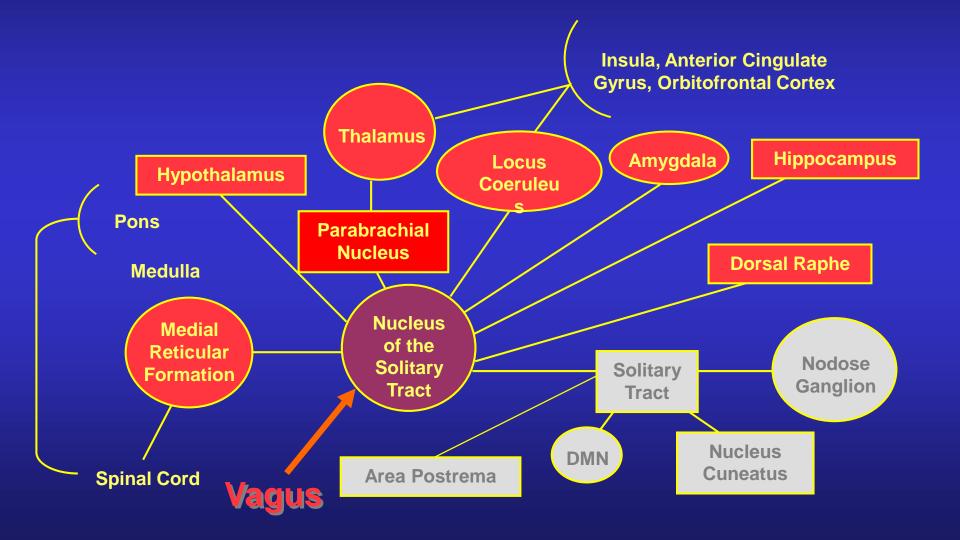
24/7 continuous cycles

Magnetic empowerment

Simple in-office programming (dosing) by treating physician


Assured compliance

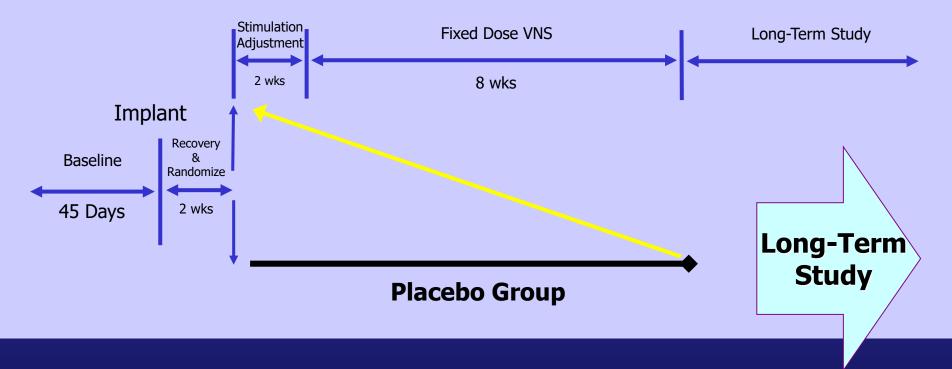
No known interactions with medications


Cervical Vagus Nerve Anatomy

- ~80% afferent fibers, mostly unmyelinated
- ~20% efferent fibers, mostly unmyelinated parasympathetic fibers to thoracoabdominal viscera
- Some myelinated fibers to striated muscles of the pharynx and larynx

Henry TR. Neurology. 2002;59(suppl 4):S3-S14.

VNS: Afferent Pathway to the Brain

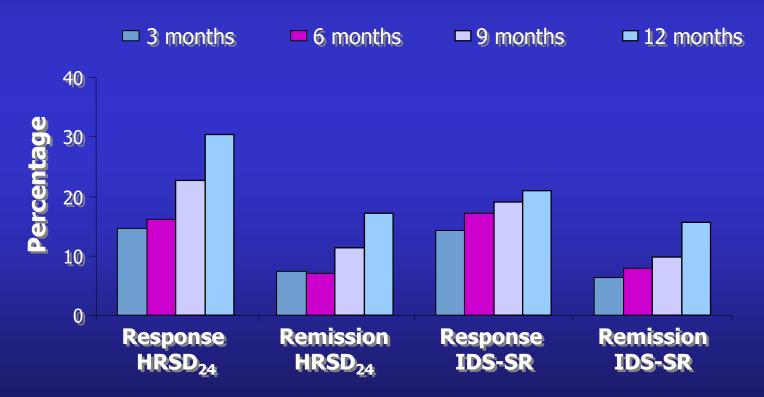

Animal Research: VNS Neurochemical and Monoamine Data

- Vagus nerve stimulation is associated with
 - LC involvement¹
 - VNS demonstrated an anticonvulsant effect in rats given electroshock
 - Chronic and acute chemical lesioning of the LC was then performed
 - After LC lesioning, VNS was no longer effective
 - NTS involvement²
 - Examined influence of GABAergic and glutamatergic transmission in the NTS on chemically induced seizures in rats
 - Increased GABA and decreased glutamate in the NTS reduced susceptibility to chemically induced seizures²

D-02 Study Design

10 weeks of VNS (8 weeks fixed dose stimulation)

Treatment Group

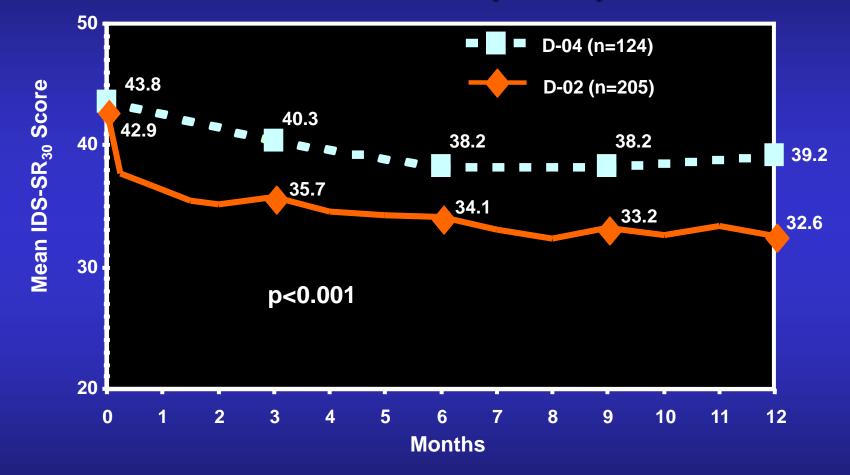


Summary of Major Acute Study Outcomes (D-02)

	Treatment	Control	
	(n=112)	(n=110)	<i>P</i> -value
HRSD ₂₄ Responders	15%	10%	.251
IDS-SR ₃₀ Responders	17%	8%	.045
CGI-I Responders	14%	12%	.648
MADRS Responders	15%	11%	.378

Long-Term Outcomes (D-02)

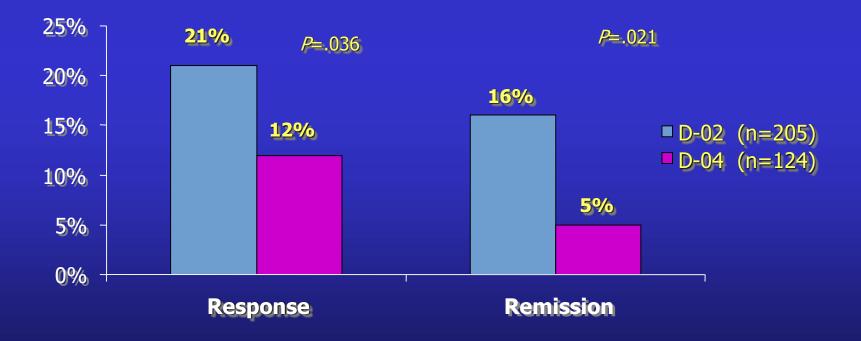
IDS-SR and HRSD₂₄ Response and Remission (Evaluable Patients)



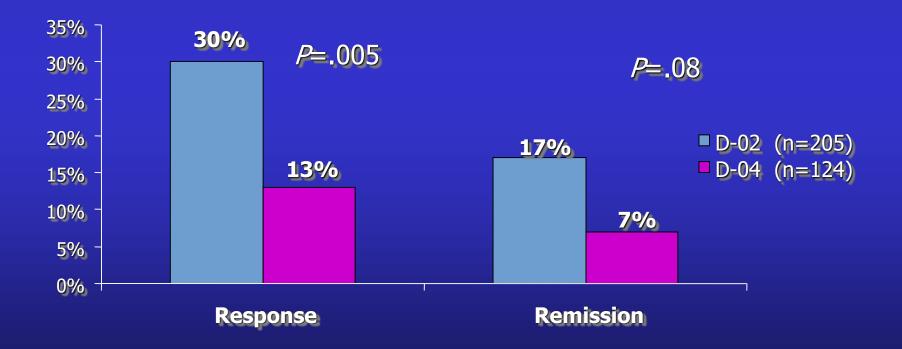
D-02 vs. D-04: Comparison of Patient Populations

Patient Characteristic	D-02 (n=205) Evaluable Population	D-04 (n=124)
Average Age (yrs.)	46	46
% Female	64%	69%
Baseline HRSD-24*	27.9	27.8
Avg Duration Lifetime Illness (yrs)	25	26
Avg Duration, Current Episode (yrs)	4.2	5.8
% Treated W/ ECT, Current Episode	35%	12%
Avg # Failed Adequate Treatments, <u>Current MDE (ATHF)</u>	4	4

*For patients W/ 12-month assessment


Adjunctive VNS (D-02) Superior to Naturalistic Treatment (D-04) Over 1 Year

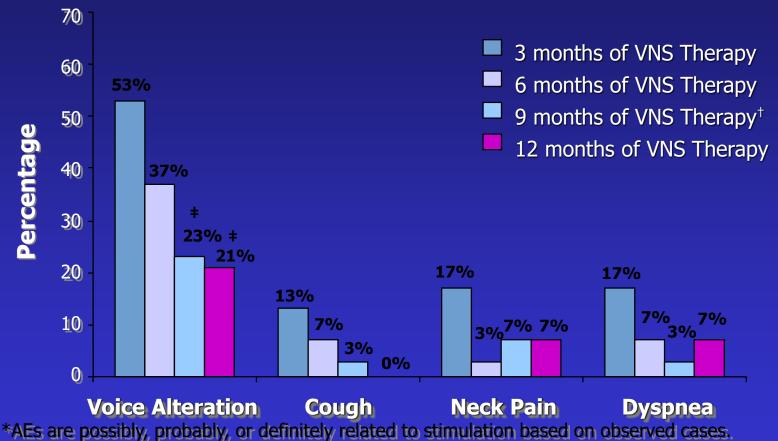
Data on File, Cyberonics; PMA-S Submission, October 2003


D-02 vs D-04: 12-Month IDS-SR₃₀

12-Month IDS-SR₃₀ Response and Remission Rates (Evaluable Patient Population; Observed Data)

D-02 vs D-04: 12-Month HRSD₂₄

12-Month HRSD₂₄ Response and Remission Rates (Evaluable Patient Population; Observed Data)

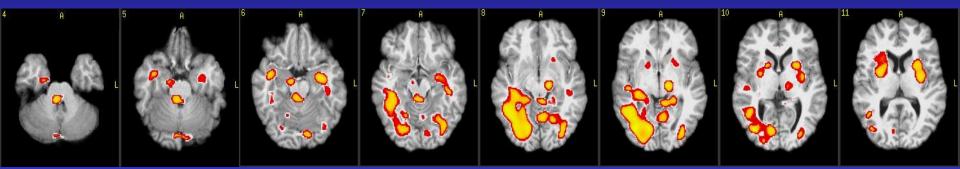


D-02 Acute Adverse Events

Adverse Event	Treatment Group, % (n=109)	Sham Control Group, % (n=110)
Neck pain	21 %	10 %
Wound infection	8 %	2 %
Dyspepsia	10 %	5 %
Vomiting	11 %	5 %
Cough increased	29 %	9 %
Laryngismus	11 %	2 %
Voice alteration*	68 %	38 %
Dyspnea*	23 %	14 %
Paresthesia*	16 %	10 %
Dysphagia*	21 %	11 %

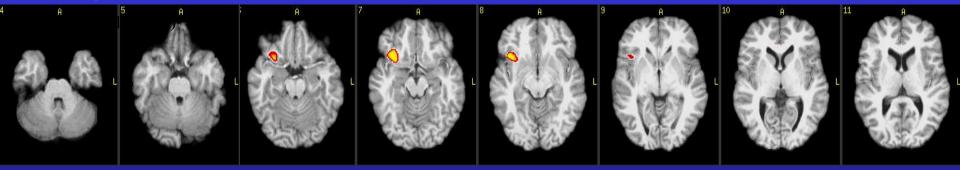
*AEs occurring at \geq 5% and 1.5 × Sham Control Group.

Longer-Term Adverse Events at >5% (Observed Cases)*


[†]9-month follow-up corresponds to 1 year postimplant.

*Statistically significant improvement from 3 months ($P \le .01$).

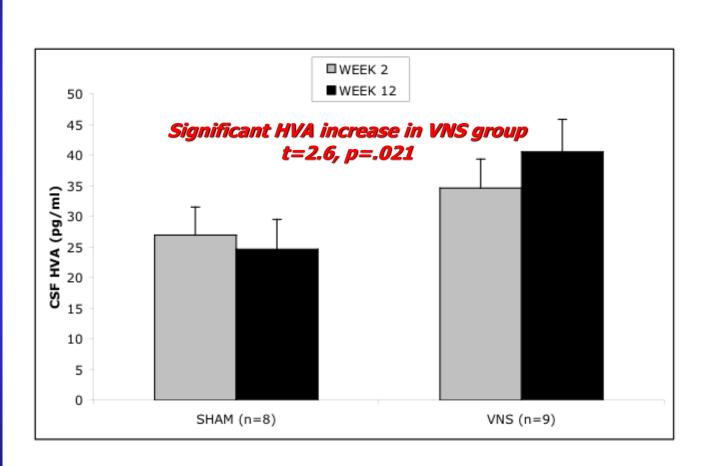
Marangell LB, et al. Biol Psychiatry. 2002;51:280-287.


SPECT studies: 10 weeks of VNS

Increased rCBF

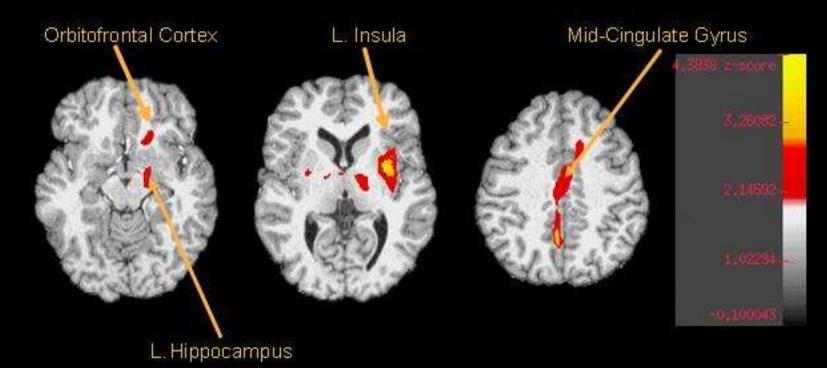
Decreased rCBF

Devous, M 2002



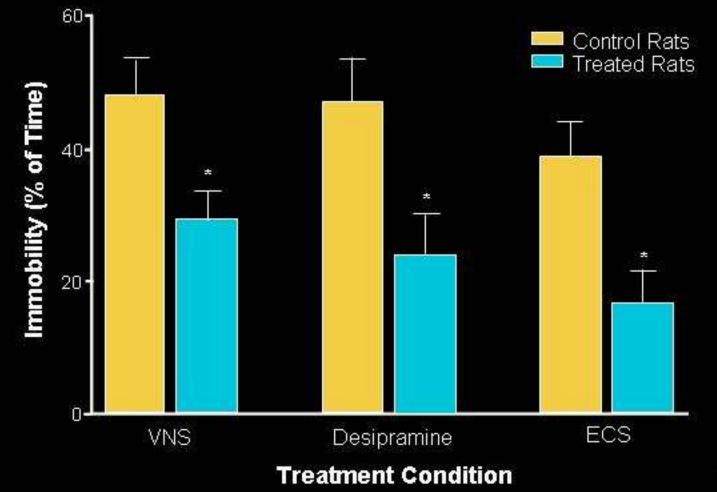
Treatment resistant MDD shows classic pre-op Ψ rCBF; deficits appear to resolve w/ VNS treatment

VNS responders show rCBF changes that include limbic system components


Effective VNS therapy is associated with remodeling of resting rCBF patterns; areas of remodeling relate to changes in symptom state

Acute Study Results: Active VNS vs. SHAM CSF HVA

Carpenter et al, 2004

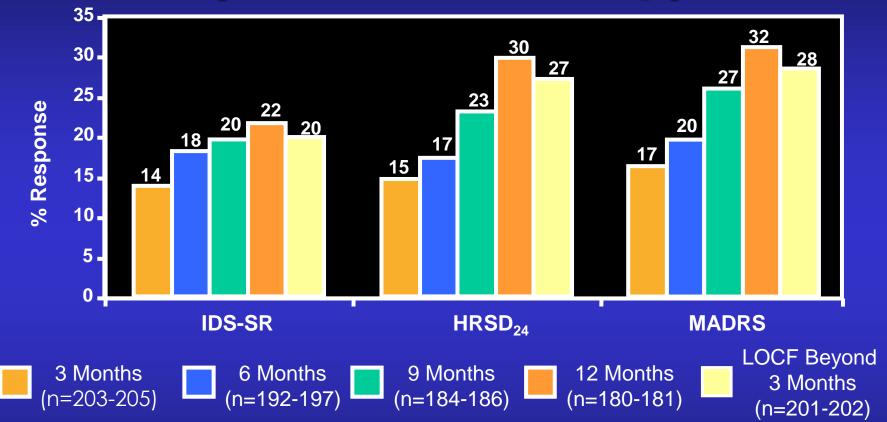

PET Shows Increased Limbic Activity in Brains of Patients with TRD After 3 Months of VNS Therapy

Data acquired from Saint Louis University, analyzed by MUSC CAIR. P<0.05 for display; no significant decreases.

MUSC CAIR = Medical University of South Carolina Center for Advanced Imaging Research. Data on file. Cyberonics, Inc.

VNS Is Effective in an Established Animal Model of Depression: Forced Swim Test

*p<0.05 vs control.

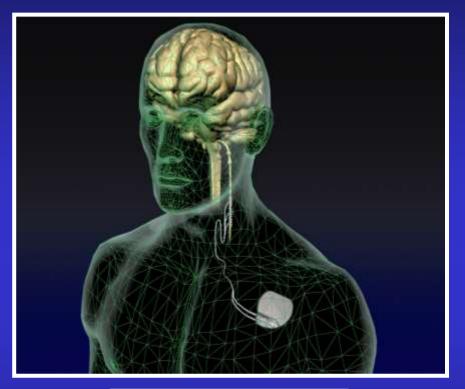

Krahl SE, et al. J Psychiatr Res. 2004;38:237-240.

Summary: Rationale for VNS Therapy in Depression

- Anatomical projections of vagus nerve into areas of brain known to be implicated in depression¹
- Evidence of mood improvement in epilepsy studies, irrespective of seizure control²
- Use of anticonvulsants as mood stabilizers/augmentation has established history in psychiatry¹
- Neuroimaging data have demonstrated that VNS Therapy affects many areas of the brain implicated in neuropsychiatric disorders¹
- Effects on neurotransmitters implicated in depression^{1,3-6}
- Activity in animal antidepressant model (FST)

 George MS, et al. Biol Psychiatry. 2000;47:287-295; 2. Harden CL, et al. Epilepsy Behav. 2000;1:93-99; 3. Ben-Menachem E, et al. Epilepsy Res. 1995;20:221-227; 4. Krahl SE, et al. Epilepsia. 1998;39:709-714; 5. Walker BR, et al. Epilepsia. 1999;40:1051-1057; 6. Krahl SE, et al. J. Psychiatr Res. 2004;38:237-240.

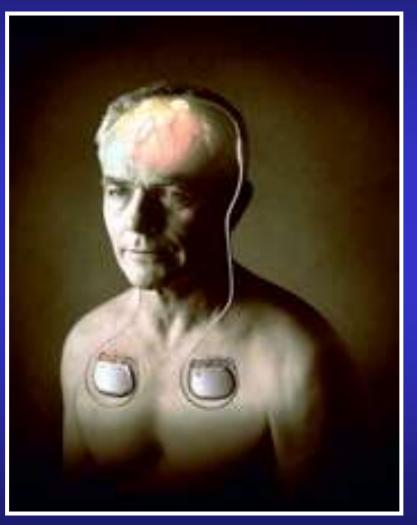
Response Rates Over Time During Adjunctive VNS Therapy

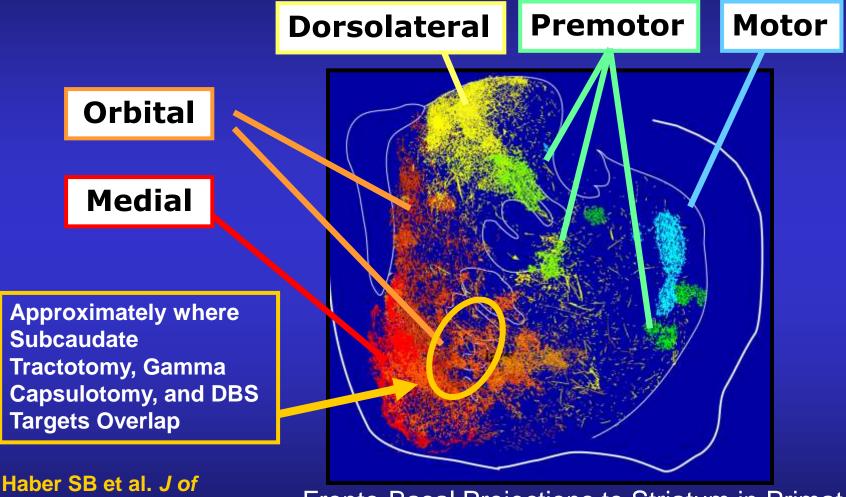

Response defined as \geq 50% reduction in HRSD₂₄, MADRS, IDS-SR₃₀ compared with pre-stimulation baseline

Rush et al, 2005

Vagus Nerve Stimulation (VNS)

Limitations

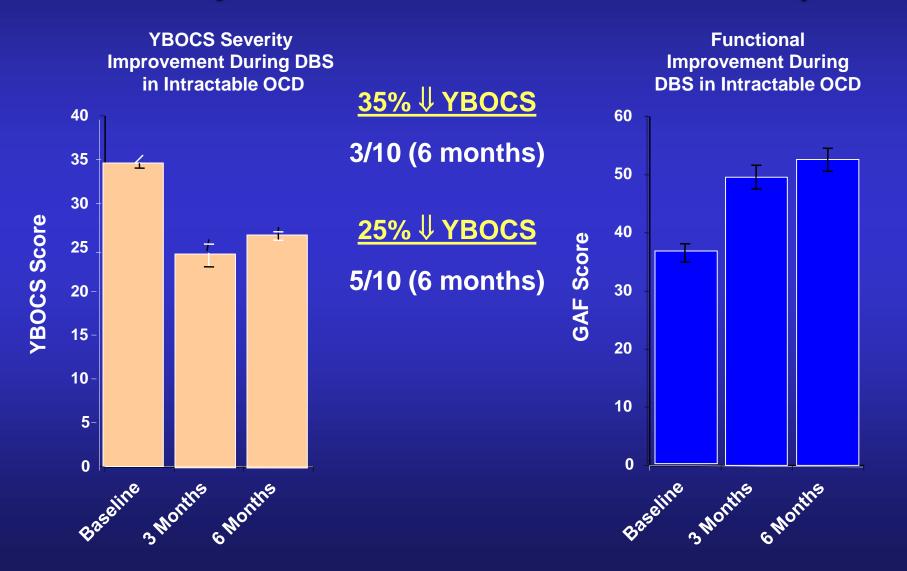

Efficacy data from nonrandomized study Surgical procedure Cosmesis **Limited acute** antidepressant effect **MRI** contraindication Battery Life (3-8 yrs)



Deep Brain Stimulation (DBS)

- FDA Approved for Parkinson's and Tremor
- Investigational for OCD, TRD
- Stereotactic Target from MRI
- Two chest-wall Internal Pulse Generators
- Burr holes in skull for electrode placement
- Stimulation parameters programmed by computer, through "wand"

Brown DBS Target: Ventral Anterior Limb Internal Capsule/Ventral Striatum



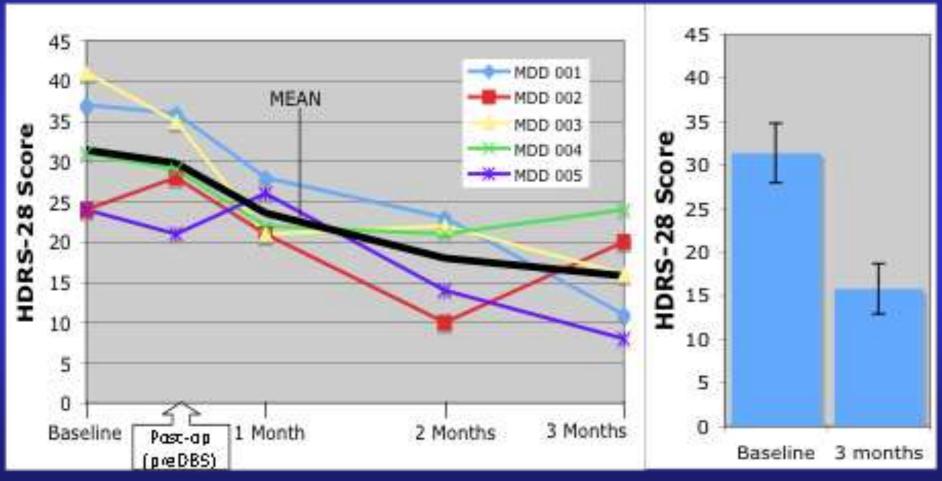
Fronto-Basal Projections to Striatum in Primate

This information concerns a use that has not been approved by the U.S Food and Drug Administration

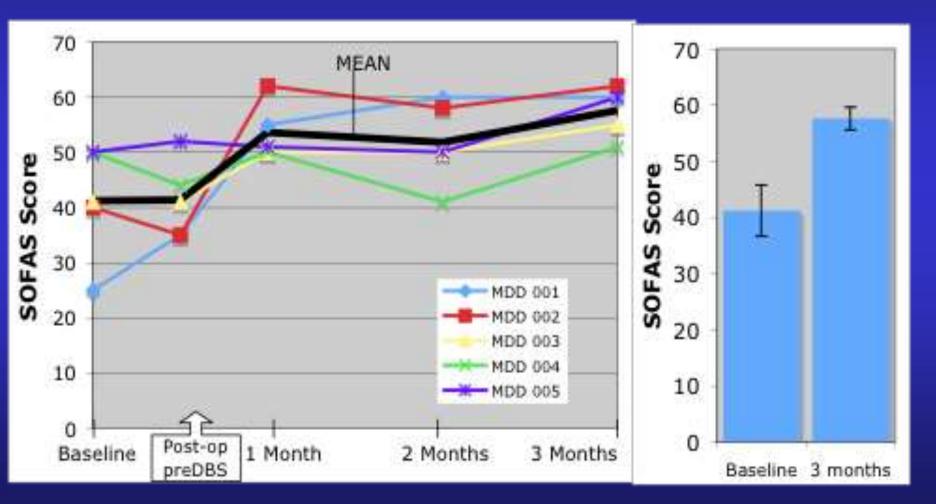
Neuroscience, 1995.

Brown Experience with DBS for OCD (n=10)

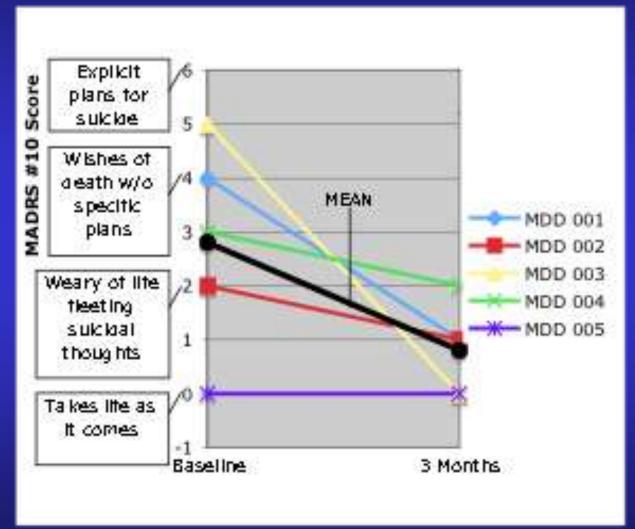
DBS for OCD: Adverse Effects


Surgical

- Small hemorrhage without symptoms or sequelae
- Superficial infection
- Single intraoperative seizure
- Stimulation
 - Hypomania (4/10)
 - Sensorimotor effects (facial)
 - Insomnia
 - Autonomic
 - Memory flashbacks
 - Panic
- OFF effects
 - Symptom return


Brown DBS for TRD: Pilot Study n=5

	AGE	SEX	HANDED- NESS	DIAGNOSIS DSM-IV	DURATIO N OF MDD	MEDS/ECT RESPONSE
001	54	Male	Right	Severe/chronic unipolar MDD, w/ melancholia	36 years	None
002	60	Male	Right	Severe bipolar I disorder, MDD w/ melancholia	35 years	No sustained benefit
003	51	Female	Left	Unipolar MDD w/ melancholia	19 years	None
004	51	Female	Right	Unipolar MDD w/ melancholia	9 years	Intermittent benefit
005	43	Female	Right	Severe unipolar MDD, single episode, w/ melancholic features	6 years	Minimal, short-lived improvement


Depression Improvement During DBS in Intractable Depression

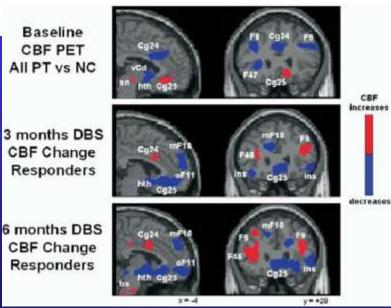
Functional Improvement During DBS in Intractable Depression

Reduced Suicidality During DBS

DBS: Subgenual Cingulate (Cg25) Region

Table 2. Hamilton Depression Rating Scale, HDRS-17, Scores over Time for Each Subject

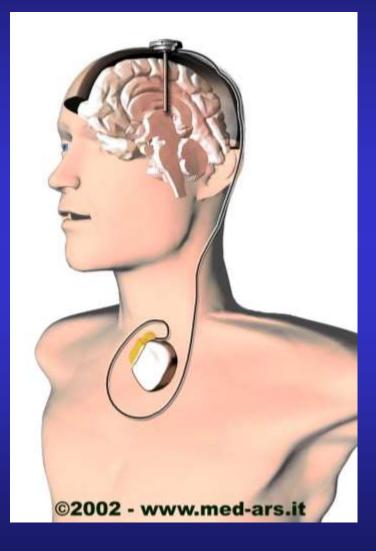
Time	Hamilton Score ^a						
	Pt 1 ^b	Pt 2°	Pt 3 ^b	Pt 4°	Pt 5 ^b	Pt 6 ^b	
Preop baseline	29	22	29	24	26	25	
1 week postop (acute stimulation)	5	10	12	18	17	12	
2 weeks postop (DBS off)	9	13	23	18	22	n/a	
1 month	10	14	17	20	22	12	
2 months	13	11	12	18	10	12	
3 months	2	15	14	25	7	14	
4 months	4	9	12	24	6	12	
5 months	5	18	7	23	8	n/a	
6 months	5	15	9	23	6	12	


^aClinical response: decrease HDRS score >50%. Clinical remission: absolute HDRS score <8.

^bClinical responders.

^c Clinical nonresponders.

Response in 4 of 6 patients Response associated with reduction in local and downstream limbic CBF on PET


Mayberg HS et al. Neuron. 2005.

Deep Brain Stimulation (DBS)

Limitations

- Limited, short-term, openlabel data in psychiatry
- Considerable Surgical Risk
- Cosmesis
- Targets and stimulation parameters not established
- MRI contraindication
- Risk of hypomania
- Battery Life

Brain Stimulation Therapies for Treatment Resistant Depression

Linda L. Carpenter, MD Associate Professor, Brown University Dept of Psychiatry Chief, Mood Disorders Program Butler Hospital

