# Drug/Drug Interactions in the Elderly

Bruce G. Pollock, M.D., Ph.D.

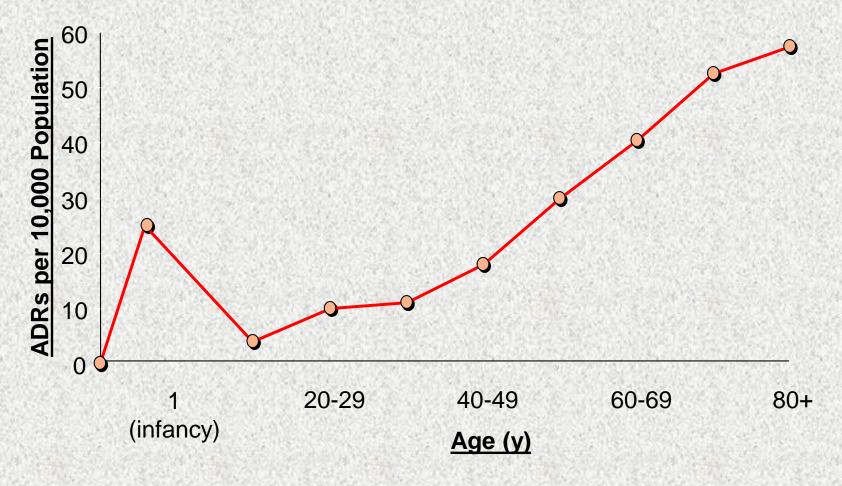
- Compared to the rate of ADRs among adults age 20-29, the rate among adults age 80+ is which of the following:
- A. Similar
- B. Twice as great
- C. Greater than 5 x as frequent
- D. Greater than 10 x as frequent

- Commonly prescribed psychiatric medications are substrates of which of the following C450 enzymes?
- A. 1A2
- B. 2D6
- C. 3A4
- D. All of the above

- Which of the following 3A inhibitors can be associated with significant drug/drug interactions when co-administered with a 3A substrate?
- A. Ketoconazole
- B. Erythromycin
- C. Calcium antagonists
- D. Any of the above

- Which of the following medications has anticholinergic properties?
- A. Furosemide
- B. Warfarin
- C. Ranitidine
- D. Digoxin
- E. All the above

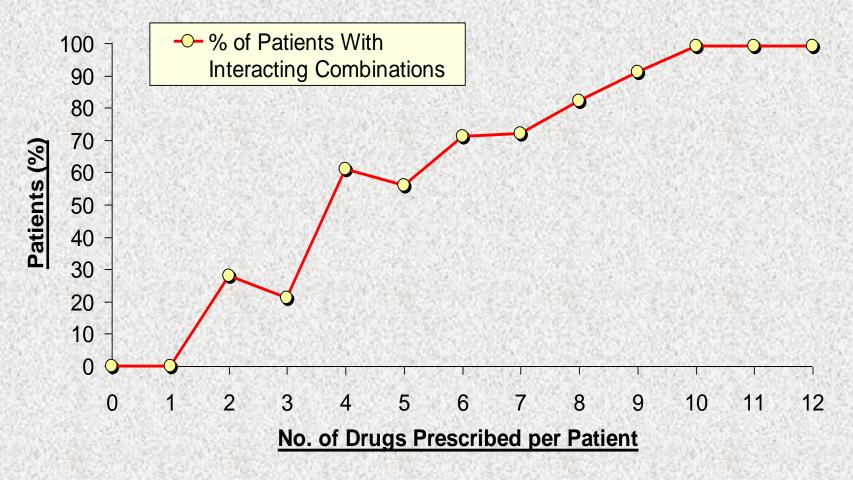
- The risk of drug/drug interactions is increased by which of the following?
- A. Narrow therapeutic index of co-administered agent
- B. Highly potent co-administered enzyme inducer or inhibitor
- C. Greater sensitivity to adverse effects in elderly patients
- D. Co-administration of multiple drugs
- E. All the above


# **Major Teaching Points**

- Elderly patients are highly vulnerable to drug/drug interactions
- Two important types of drug/drug interactions to understand and prevent are:
  - Pharmacokinetic interactions based on drug metabolism through the cytochrome P450 system
  - Pharmacodynamic interactions based on additive serum anticholinergicity

# **Brief Outline**

- Adverse drug interactions' relationship to age, location, number of prescribed drugs
- Cytochrome P450 drug interactions
- Drug interactions based on additive serum anticholinergicity
- Coping with drug/drug interactions
   Suggested readings


#### Adverse Drug Reactions (ADRs) as a Function of Increasing Age

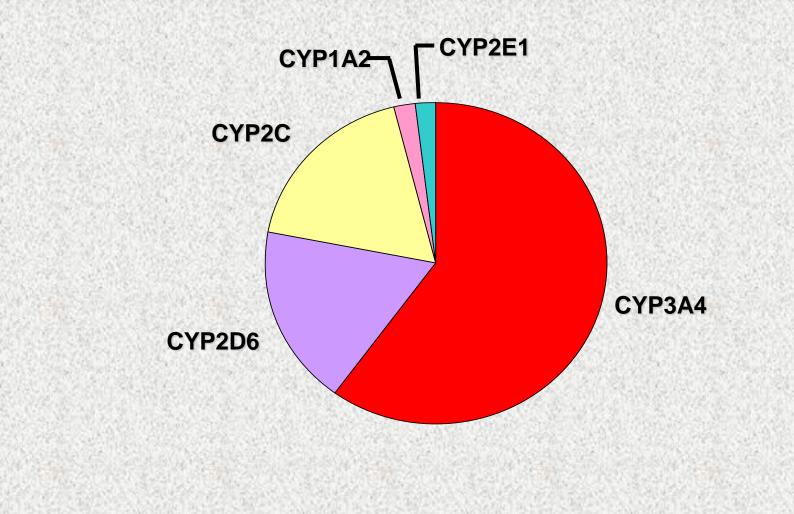


## Adverse Drug Reactions in the Nursing Home

Sychoactive medications (antipsychotics, antidepressants, and sedatives/hypnotics) and anticoagulants were the medications most often associated with preventable ADRs

#### Relationship Between Prescribing Rate and Prevalence of Potential Drug Interactions




Nolan L, O'Malley K. Age Ageing. 1989;18:52-56.

11

# **Clinical Dilemma**

- Number of possible drug interactions too large to memorize
- Difficult to determine which interactions are important
- Conflicting promotional claims

# Cytochrome P-450 Enzyme Subtypes



| Representative substrates                     |
|-----------------------------------------------|
| Caffeine, theophylline, tacrine               |
| Propofol, bupropion                           |
| Phenytoin, S-warfarin, tolbutamide,<br>NSAIDs |
| Omeprazole (partial contributor to many)      |
| Some CNS and cardiac drugs                    |
| Fluranes, chlorzoxane                         |
| (many)                                        |
|                                               |

# <u>CYP3A</u>

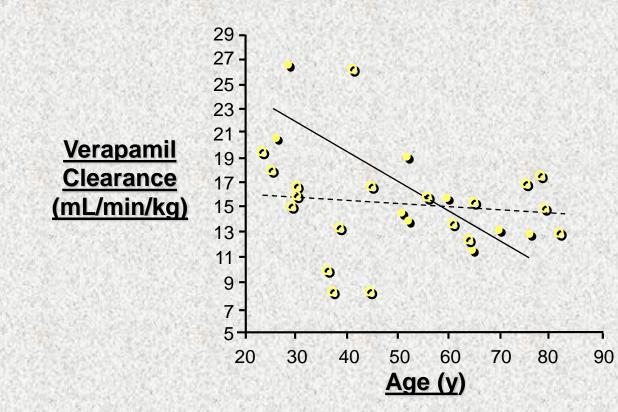
- High abundance
- Present in G.I Tract
- No polymorphism, but high individual variability

# **CYP3A Substrates**

| Complete                                  | Partial       |
|-------------------------------------------|---------------|
| Benzodiazepines (short t <sub>1/2</sub> ) | Zolpidem      |
| Buspirone                                 | Amitriptyline |
| Trazodone                                 | Imipramine    |
| Nefazodone                                | Sertraline    |
| Cyclosporine                              | Citalopram    |
| Statins                                   | Diazepam      |
| Calcium antagonists                       | Clozapine     |
| Quinidine                                 |               |
| Protease Inhibitors                       |               |
| Sildenafil                                |               |

# **CY3A Inhibitors**

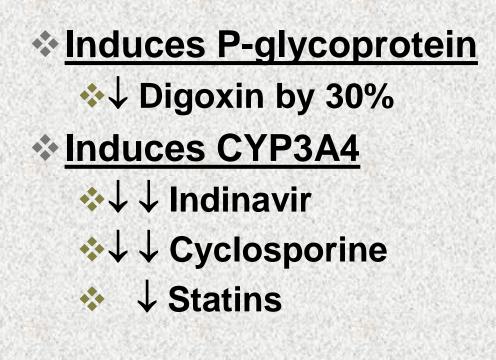
| High Risk           | Moderate Risk    |
|---------------------|------------------|
| Ketoconazole        | Fluconazole      |
| Itraconazole        | Fluvoxamine      |
| Nefazodone          | Fluoxetine       |
| Ritonavir (acute)   | Grapefruit juice |
| Erythromycin        | Other HIV PIs    |
| Clarithromycin      | Delavirdine      |
| Calcium Antagonists | Cimetidine       |
|                     |                  |


# **CYP3A Inducers**

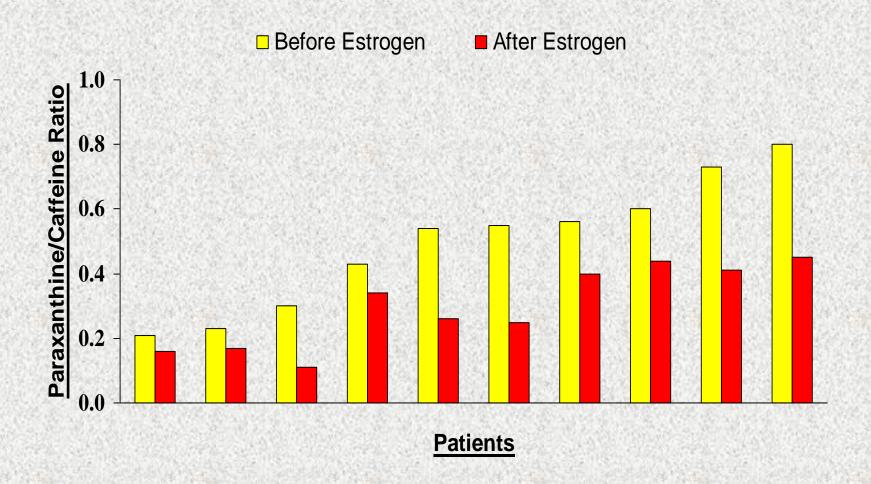
#### **\***Rifampin

- Barbiturates
- Carbamazepine
- Ritonavir (chronic)
- \* Nevirapine

Hypericum perforatum (St. John's Wort)


#### **CYP3A4: Verapamil**




Racemic verapamil clearance data are plotted versus age for women (*solid circles*) and men (*open circles*). The *solid line* represents the regression of clearance versus age relationship in women (P < .004) and the *broken line* represents the regression of clearance versus age in men (regression not significant).

Schwartz JB, et al. Clin Pharmacol Ther. 1994;55:509-517.

# St. John's Wort



#### CYP1A2 Phenotyping (Caffeine) Results Before and After Estrogen Treatment of Healthy Postmenopausal Women



Pollock BG, et al. J Clin Psychopharmacol. 2000;20:137-140.

#### <u>Cytochrome P-450:</u> Enzymes and Selected Substrates

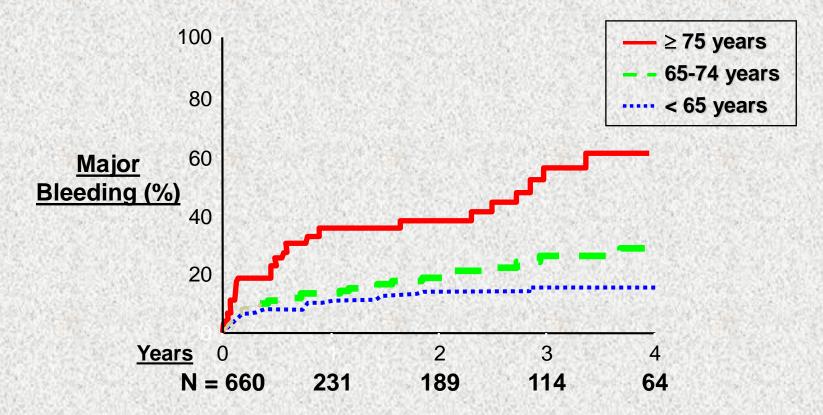
| 1A2             | 2C            | 2D6         | 3A4                          |
|-----------------|---------------|-------------|------------------------------|
| Theophylline    | Phenytoin     | Codeine     | Antihistamines               |
| Warfarin        | Warfarin      | Venlafaxine | Calcium channel<br>blockers  |
| Antipsychotics  | Amitriptyline | Trazodone   | Carbamazepine                |
| Benzodiazepines | Clomipramine  | Risperidone | Cisapride                    |
| Fluvoxamine     | Omeprazole    | Haloperidol | Corticosteroids              |
|                 |               | Tramadol    | Cyclosporine                 |
|                 |               | β-Blockers  | Fentanyl                     |
|                 |               |             | Protease inhibitors          |
|                 |               |             | Statins                      |
|                 |               |             | Triazolo-<br>benzodiazepines |

Michalets EL. *Pharmacotherapy*. 1998;18:84 -112. Cupp MJ, Tracy TS. *Am Fam Physician*. 1998;57:107-116.

#### Inhibition of Human Cytochrome P-450 Isoenzymes by Newer Antidepressants

#### Cytochrome P-450 Isoenzyme

| Antidepressant         | 1A2                                           | 2C9 | 2C19    | 2D6            | 2E1                         | 3A         |
|------------------------|-----------------------------------------------|-----|---------|----------------|-----------------------------|------------|
| Fluoxetine             | nik karas (* + nike                           | 1   | + to ++ | +++            |                             | SHAP.      |
| Norfluoxetine          | + + + + + + + + + + + + + + + + + + +         | ++  | + to ++ | +++            | 19 <del>- 1</del> 9 - 19    | ++         |
| Sertraline             | 540-000 <b>+</b> 3540                         | +   | + to ++ | +              |                             | +          |
| Desmethylsertraline    | 1                                             | +   | + to ++ | +              |                             | +          |
| Paroxetine             | Sal Street                                    | +   | The the | +++            | 75 12                       | +          |
| Fluvoxamine            | +++                                           | ++  | +++     | 33 <b>+</b> 33 |                             | ++         |
| Citalopram             | ter ser ter ter ter ter ter ter ter ter ter t | 0   | 0       | 0              | 0                           | 0          |
| R-Desmethylcitalopram  | 0                                             | 0   | 0       | +              | 0                           | 0          |
| Escitalopram           | 0                                             | 0   | 0       | 0              | 0                           | 0          |
| S-Desmethylcitalopram  | 0                                             | 0   | 0       | 0              | 0                           | 0          |
| Nefazodone             | 0                                             | 0   | 0       | 0              |                             | +++        |
| Triazoledione          | 0                                             | 0   | 0       | 0              | 9 (c <del>. 4</del> 9 (c)   | 10 to (+). |
| Hydroxynefazodone      | 117 <b>O</b>                                  | 0   | 0       | 0              | $R_{\rm eff} \rightarrow 0$ | +++        |
| Venlafaxine            | 0                                             | 0   | 0       | 0              |                             | 0          |
| O-Desmethylvenlafaxine | 0                                             | 0   | 0       | 0              |                             | 0          |
| Mirtazapine            | 0                                             |     |         | +              | 1.3. <u></u>                | 0          |


0 = minimal or zero inhibition.

- + = mild inhibition.
- ++ = moderate inhibition.
- +++ = strong inhibition.

= no data available.

Greenblatt DJ, et al. *J Clin Psychiatry*. 1998;59(suppl 15):19-27. von Moltke LL, et al. *Drug Metab Disposition*. 2001;29:1102-1108.

### Incidence of Bleeding During Anticoagulant Therapy

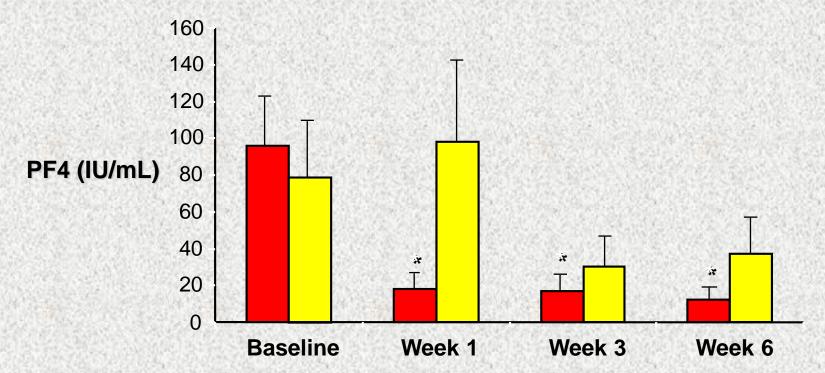


Beyth RJ, Schorr RI. Drugs Aging. 1999;14:231-239.

#### American Medical Directors Association "Top 10" Drug Interactions Includes:

# Warfarin with:

NSAIDs Macrolides Phenytoin Sulfa Drugs Quinolones


# Warfarin Metabolism

**Fluoxetine** S-warfarin CYP2C9 **Fluvoxamine** (Sertraline) (Paroxetine) **Fluvoxamine R**-warfarin CYP1A2 (major pathway) (Fluoxetine) (Sertraline) (Paroxetine)



*R*-warfarin CYP2C19 (minor pathway) & CYP3A4

#### Platelet Activation in Depressed Patients With Ischemic Heart Disease After Paroxetine or Nortriptyline Treatment



 Effect of paroxetine ( ) and nortriptyline () on PF4 plasma levels in depressed patients with ischemic heart disease. Data presented are mean ± SEM

\**P* < .05 versus baseline levels. PF4 = platelet factor 4. Pollock BG, et al. *J Clin Psychopharmacol.* 2000;20:137-140.

## Anticholinergic Medications Commonly Prescribed in the Elderly

#### **Commonly Prescribed in the Elderly**

- Furosemide
- \* Digoxin
- Theophylline
- Warfarin
- Prednisolone
- Triamterene and hydrochlorothiazide

- Nifedipine
- \* Isosorbide
- \* Codeine
- Cimetidine
- Captopril
- \* Ranitidine
- Dipyridamole

#### Age, Sex, Education, Number of Medications, <u>MMSE score, and SA (N = 201)</u>

| Mean (SD) Age                            | 78.2 (5.2)    |
|------------------------------------------|---------------|
| Female (N, %)                            | 122 (60.7%)   |
| Education (< high school)                | 38.3 %        |
| Number of Medications                    | 5.2 (3.4)     |
| Number of Anticholinergic<br>Medications | 0.91 (1.23)   |
| MMSE                                     | 26.8 (3.5)    |
| SA (pmol/mL) — Mean (SD)                 | 1.45 (1.10)   |
| Median (Range)                           | 1.25 [0-5.70] |

#### MMSE = Mini-Mental State Examination.

SA = serum anticholinergicity.

Mulsant BH, Pollock BG, et al. Am J Ger Psychiatry. 2002;10(suppl):58.

### Logistic Regressions: SA as a Continuous Variable

|           |               | OR    | 95% CI         |
|-----------|---------------|-------|----------------|
| Age       |               | 1.20  | (1.09, 1.32)   |
| Sex       | Male          | 1.00  |                |
|           | Female        | 1.15  | (0.37, 3.57)   |
| Education | < high school | 1.00  |                |
|           | ≥ high school | 0.39  | (0.13,1.21)    |
| # of Rx   | 0-3           | 1.00  |                |
|           | * 4-6 🔅       | 1.46  | (0.39,5.44)    |
|           | > 6           | 1.21  | (0.29,5.05)    |
| SA        |               | 16.71 | (2.02, 138.29) |

#### SA = serum anticholinergicity.

Mulsant BH, Pollock BG, et al. Am J Ger Psychiatry. 2002;10(suppl):58.

# Elderly Are More Difficult to Treat Safely

- Pharmacokinetic changes result in higher and more variable drug concentrations
- The elderly often take multiple medications
- Greater sensitivity exists to a given drug concentration
- Homeostatic reserve may be impaired

#### **When To Worry About Drug Interactions**

Narrow therapeutic index of victim
Highly potent inducer or inhibitor

# **Coping With Drug Interactions**

Anticipation and prevention
 Highly potent inducer/inhibitor
 Narrow therapeutic index of victim
 Victims dependent on one metabolic enzyme/transport protein

# **Coping With Drug Interactions**

- Recognize interaction potential of "nondrugs" (herbals)
- Keep knowledge base current
- Consider interactions whenever the clinical picture unexpectedly changes

# **Suggested Readings**

- Pollock BG: Geriatric Psychiatry: Psychopharmacology: General Principles. In: Sadock BJ, Sadock VA, eds. Kaplan & Sadock's Comprehensive Textbook of Psychiatry/VII. Baltimore: Williams & Wilkins 2000 pp 3086-3090.
- DeVane CL, Pollock BG: Pharmacokinetic considerations of antidepressant use in the elderly. J Clin Psychiatry 60[suppl 20]:38-44, 1999.

- Compared to the rate of ADRs among adults age 20-29, the rate among adults age 80+ is which of the following:
- A. Similar
- B. Twice as great
- C. Greater than 5 x as frequent
- D. Greater than 10 x as frequent

- Commonly prescribed psychiatric medications are substrates of which of the following C450 enzymes?
- A. 1A2
- B. 2D6
- C. 3A4
- D. All of the above

- Which of the following 3A inhibitors can be associated with significant drug/drug interactions when co-administered with a 3A substrate?
- A. Ketoconazole
- B. Erythromycin
- C. Calcium antagonists
- D. Any of the above

- Which of the following medications has anticholinergic properties?
- A. Furosemide
- B. Warfarin
- C. Ranitidine
- D. Digoxin
- E. All the above

- The risk of drug/drug interactions is increased by which of the following?
- A. Narrow therapeutic index of co-administered agent
- B. Highly potent co-administered enzyme inducer or inhibitor
- C. Greater sensitivity to adverse effects in elderly patients
- D. Co-administration of multiple drugs
- E. All the above

# Self Assessment Question Answers

◆ 1. C
◆ 2. D
◆ 3. D
◆ 4. E
◆ 5. E