You are here: Home / Central Office (Cordoba Unit) / EDUCATION / Thomas A. Ban Neuropsychopharmacology in Historical Perspective - Education in the Field in the Post-Neuropsychopharmacology Era / Bulletin 43 : Neuropharmacology (Volume Three): 3b. Contributions of Interviewees
Friday, 21.02.2020

Thomas A. Ban 
Neuropsychopharmacology in Historical Perspective 
Education in the Field in the Post-Neuropsychopharmacology Era 

Background to An Oral History of the First Fifty Years 
Neuropharmacology (Volume Three): 3b. Contributions of Interviewees 
(Bulletin 43) 

 

          Four interviewees (Garattini, Dingell, Sulser and Frazer) contributed to the neuropharmacology of antidepressants. In the late 1950s Silvio Garattini, in collaboration with Costa and Valzelli, found that imipramine reversed reserpine-induced hypothermia and ptosis. In the early 1960s reserpine reversal was introduced in the screening for potential antidepressants (Costa, Garattini and Valzelli 1960). In the late 1960s Garattini showed that oxazepam was a pharmacologically active metabolite of diazepam (Marcucci, Fanelli, Mussi and Garattini 1970). 

          In the early 1960s James Dingell, a second-generation disciple of Brodie and a pupil of Gillette, isolated desmethylimipramine (desipramine, DMI), a secondary amine metabolite of imipramine (Gilette, Dingell, Sulser, Kuntzman and Brodie 1961). In collaboration with Sulser and Gillette, Dingell demonstrated that DMI has a longer half-life than its parent substance (Dingell, Sulser and Gillette 1962). He had also shown that chronic administration of imipramine to rats led to accumulation of DMI (and not of imipramine) in tissues, including the brain (Dingell, Sulser and Gillette 1964).   

           Fridolin Sulser, another Brodie disciple, was first in the early 1960s to recognize that reserpine reversal was dependent on the availability of NE (Sulser, Bickel and Brodie 1964). He found that DMI no longer reversed the effects of reserpine after depleting brain NE by α-methyltyrosine (Sulser 1998). In the mid-1970s, in collaboration with Jerzy Vetulani, Sulser discovered that chronic treatment with tricyclic and MAOI antidepressants (as well as with ECT) decreased the number of β-adrenoreceptors and reduced the responsiveness of the β-adrenoreceptor-coupled adenylate cyclase system to NE in limbic and cortical structures in the rat brain (Vetulani and Sulser 1975).  Pursuing this line of research further, with a shift in emphasis from pre-synaptic to post-synaptic mechanisms, he found in collaboration with Sanders-Bush that both NE, through the activation of the cyclic AMP – protein kinase A pathway, and 5HT, through the activation of the diacylglycerol (DAG) - protein kinase C pathway, caused phosphorylation of nuclear CREB (cyclic adenosine monophosphate regulated element binding protein) (Sanders-Bush, Conn and Sulser 1975). Furthermore, in collaboration with Manier and Shelton, he also revealed that chronic treatment with noradrenergic antidepressants produced a highly significant reduction (down–regulation) of CREB - P, the biologically active form of the transcription factor (Manier, Shelton and Sulser 2002).  

          The finding of β-receptor down regulation in chronic treatment with noradrenergic antidepressants was further refined by Alan Frazer who had shown, with the employment of quantitative-autoradiography, that desipramine preferentially down-regulated β- adrenoreceptors (Ordway, Gambrena and Frazer 1988). Frazer was first to demonstrate that chronic treatment with SSRIs down-regulated SERT (serotonin transporter) and that the ovarian hormones, estradiol and progesterone could inhibit the ability of SSRIs to slow the clearance of 5HT (Benmansour, Cecchi, Morilak, Gerhardt, Javors, Gould and Frazer 1999; Frazer; Benmansour, Pietrowski, Altamarino and Frazer 2009). Screening for potential antidepressants with the forced swimming test, Frazer and his associates found a dose-dependent improvement of “behavioral despair” with leptin, a hormone with receptors in limbic structures, secreted by adipose tissues (Lu, Kim, Frazer and Zhang 2006). 

          Two interviewees (Wurtman and Sanders-Bush) contributed to the neuropharmacology of serotonin. In the early 1970s Richard Wurtman, in collaboration with John Fernstrom, demonstrated that administration of tryptophan increased brain 5HT (Fernstrom and Wurtman 1971). They had also shown an increase in brain serotonin following ingestion of a carbohydrate diet (Fernstrom and Wurtman 1972).  Wurtman, a disciple of Axelrod, discovered in the mid-1960s that melatonin is synthesized in the pineal gland and the synthesis of melatonin is controlled by light (Wurtman1985; Wurtman, Axelrod and Fisher 1964).  He also revealed that the NE content of the pineal gland changes during the 24-hour diurnal rhythm (Wurtman and Axelrod 1966). 

          Elaine Sanders-Bush, a disciple of Sulser, was one of the first to demonstrate that there are multiple serotonin receptors; she also described their regional distribution (Blackshear, Steranka and Sanders-Bush 1981). In the mid-1980s Sanders-Bush discovered that calcium was a second messenger of the 5HT-2 family of 5HT receptors (Sanders-Bush and Conn 1987). 

          Two interviewees (Berger and Lal) contributed to the neuropharmacology of anxiolytics.  In the mid-1940s Frank Berger found that mephenesin produced reversible flaccid paralysis in mice (Berger and Bradley 1946). He also noted that animals became quiet and “tranquilized” after small doses of the drug (1998). Berger was instrumental in synthesizing, developing and introducing meprobamate, a substance with a similar pharmacological profile to mephenesin but with a longer duration of action (Berger 1954, 1977).   

          Harbans Lal developed a pentylenetetrazol-induced model of anxiety for studying the anxiolytic effect of drugs (Jung, Lal and Gatch 2002; Lal and Shearman 1982). Lal was first to show that centrally acting anti-muscarinic drugs antagonized the effect of neuroleptics on apomorphine induced aggression but not of the effect of morphine (Gianutsos and Lal 1976).  

          Three interviewees (Iversen, Paul and Enna) contributed to the neuropharmacology of γ-aminobutyric acid.  Leslie Iversen, a disciple of Axelrod was first, in the 1960s, to demonstrate a calcium dependent release of GABA in crustaceans in response to stimulation of an inhibitory nerve (Iversen 1978; Iversen, Mitchell and Srimivasan 1971; Osuka, Iversen, Hall and Kavitz 1966). He was also first to demonstrate GABA uptake mechanisms in the mammalian brain (Iversen and Neel 1968). In the 1970s Iversen found that naloxone, an opiate antagonist, blocked morphine’s suppressant effect on the release of Substance P from the sensory nuclei of the brain and spinal cord (Dingledine, Iversen, and Breuker 1976; Iversen, Jessell and Kanazawa 1976).  

          In the late 1970s Steven Paul and his associates demonstrated the action of benzodiazepines, ethyl alcohol and barbiturates on the GABA receptor system (Hammer, Skolnick and Paul 198). Paul was first to show the binding of imipramine to the 5HT transporter in man (Paul, Rehavi, Rice, Ittah and Skolnick 1981). In the late 1980s he had discovered neuroactive progesterone metabolites in the brain and showed that these metabolites interacted with the GABA receptor system (Paul and Purdy 1982; Puia, Santi, Vicini, Pritchett, Purdy and Paul 1990).    

          Salvatore Enna contributed to the delineation of the of biochemical properties of the GABA receptor system and to the demonstration of correspondence between GABA receptors and benzodiazepine recognition sites (Enna and Möller 1987).  In collaboration with Sands and Reisman, Enna was first to demonstrate the effect of antidepressants on GABA function (Sands, Reisman and Enna 2004).  

          Two interviewees, Fuxe and Dahlström, both students of Nils-Ǻke Hillarp, mapped the major DA, NE and 5HT pathways in the brain with the use of fluorescence histochemistry, a technique developed by Falck and Hillarp (Anden, Carlsson, Dahlström, Fuxe and Hillarp 1964; Anden, Dahlström, Fuxe, Larsson, Olson and Ungerstedt 1966; Falck, Hillarp, Thieme and Torp 1962). In the late-1960s Kjell Fuxe, in collaboration with Anden, Corrodi and Hökfelt, had shown that hallucinogenic drugs of the indolylalkylamine types, such as LSD, activated post-synaptic 5HT receptors in the brain (Anden, Corrodi, Fuxe and Hökfelt 1968). In the mid-1970s, in collaboration with Luigi Agnati, he demonstrated that bromocriptine was a dopamine agonist. In the early 1980s Fuxe and Agnati introduced the concept of intra-membrane, receptor-receptor interactions; and in the mid-1980s they demonstrated a slow, “volume transmission,” in the brain that involves the diffusion and “convection” of transmitters and modulators in the extra-cellular and cerebrospinal fluid (Agnati, Fuxe, Zoli, Zini, Toffano and Ferraguti 1986; Fuxe 2002; Fuxe and Agnati 2006; Fuxe, Agnati, Benfenati, Celani, Zini, Zoli and Mutt 1983).                       

          Annica Birgitta Dahlström and Kjell Fuxe were first in the mid-1960s to demonstrate the presence of monoamines in the cell bodies of brain stem neurons (Dahlström and Fuxe 1964). They were also first to show experimentally-induced changes in the intraneuronal amine levels of bulbospinal neurons systems (Dahlström and Fuxe 1965).  In the late 1960s Dahlström discovered axonal transport mechanisms and identified two groups of adenosine triphosphatase molecules, one involved in the fast transport from the cell body to the nerve endings and the other in “retrograde transport” (Dahlström 1966, 1971).  

          Three interviewees (Pert, Akil and Barchas) contributed to the neuropharmacology of neuropeptides and endorphins. In 1973 Candace Pert, a student of Solomon Snyder, was one of the first to discover the opiate receptor (Pert and Snyder 1973). She also localized in the rat brain the receptor with the employment of autoradiography (Pert, Kuhar and Snyder 1976). In 1986 Pert identified T (thymus) peptide that blocks HIV (human immunodeficiency virus) infection (Pert, Hill, Ruf, Berman and Robey 1986).  

          Huda Akil in the mid-1970s found that analgesia induced in rats by electrical stimulation of the brain was blocked by the administration of naloxone, a morphine antagonist (Akil, Mayer and Liebeskind 1976). She was the first to demonstrate that stress increased endorphin levels (Akil, Madden, Patrick and Barchas 1976). Akil, in collaboration with Stanley Watson, mapped the distribution of different endorphins in the brain (Akil and Watson 1987).  

          Jack D. Barchas was member of the team which demonstrated the presence of dynorphin 1-8 in hypothalamic magnocellular neurons in the1980s (Weber, Roth, Evans, Chang and Barchas 1982). He was also member of the team which isolated metorphamide, an amidated octapeptide, from bovine brain (Weber, Esch, Bohlen, Patterson, Corbett, McKnight, Kosterlitz Barchas et al. 1983). Focusing on neuropeptides, Barchas and his associates had shown the release of BAM 18, a product of peptide E, in response to stimulation (Boarder, Evans, Adams, Erdelyi, Barchas et al. 1987). They had also shown that dynorphin 1-8, an α-endorphin, is localized in the same cerebral systems (Barchas, Tatemoto, Faull, Evans, Valentino and Eberwine 1987).  

          Four interviewees (Agranoff, Barondes, Jarvik and Kandel) contributed to the elucidation of the biochemistry of memory. Bernard Agranoff in the 1950s discovered cytidine diphosphate-diacylglycerol, a substance important as an intermediate in the phosphoinositide cycle and in signal transduction (Agranoff, Bradley and Brady 1958). He also demonstrated a competition between dietary choline and inositol in growing chicks (Agranoff and Fox 1959). In the mid-1960s Agranoff had shown that administration of actinomycin D, a substance that blocks RNA synthesis, impaired retention (Agranoff, Davis, Casola and Lim 1967). He had also shown that administration of puromycin, a substance that blocks protein synthesis, produced retrograde amnesia in goldfish (Agranoff, Burrell, Dokas and Springer 1978; Agranoff, Davis and Brink 1965).  

          The relationship between protein synthesis and memory storage was further substantiated by Samuel Barondes’ demonstration that cycloheximide produced impairment of long-term memory in mice (Barondes 1968; Barondes and Cohen 1966, 1967; Squire and Barondes 1970).  During the 1970s and 1980s Barondes discovered sugar binding proteins, called lectins, in slime molds and suggested that lectins play a role in cellular connections and interactions (Barondes 1984; Barondes, Catronova and Cooper 1994). He also identified a family of animal β-galactoside–binding lectins, he referred to as galactins, in chicken, mouse, frog and human tissues, including the brain (Barondes 1984; Barondes and Jarvik 1964).   

          Murray E. Jarvik collaborated with Barondes in studying the effect of actinomycin D on brain RNA synthesis and memory (Flood, Jarvik, Benntte, Orme and Rosenzweig 1977). He corroborated evidence for the negative effect of protein synthesis inhibition on memory (Barondes and Jarvik 1964; Jarvik, Jaffe and Jarvik 1978). In the 1980s Jarvik’s research shifted from memory to smoking and in the 1990s he introduced a “nicotine patch” that released nicotine through the skin (Jaffe and Jarvik 1964). Jarvik was first to show that bromocriptine, a dopamine agonist, decreased smoking (Jarvik, Caskey, Wirshing et al. 2000).  

          Eric Kandel, a Nobel Laureate, explored biochemical and molecular mechanisms involved in learning in Aplysia, demonstrating that the gill withdrawal reflex can undergo second order conditioning. In a series of elegant experiments, Eric Kandel identified serotonin as a critical transmitter that produced cyclic AMP which, when injected into sensory neurons, produced facilitation. In collaboration with Paul Greengard they injected a purified catalytic subunit of protein kinase A into presynaptic sensory neurons and found it simulated the actions of serotonin or cyclic AMP. These studies provided the first molecular insight into the process of learning (Karen, Walters and Kandel 1981; Kandel 2001, 2007; Sulser 2011). 

          Interviewees included in Volume 3 entered the field at different stages in the development of neuropsychopharmacology.  Hence, the transcripts cover 50 years of history, from the introduction of the spectrophotofluorometer to the introduction of molecular genetic techniques. During these 50 years research in neuropharmacology extended from synaptic events, measured by neurotransmitter metabolism, to intracellular events, measured by protein synthesis and breakdown, and from the first to the third messenger systems in defining the action of psychotropic drugs.  

          Fridolin Sulser, the editor of this volume, was one of the leaders in the field during the neurotransmitter era. His research has been a moving force in the elucidation of the mode of action and in the development of antidepressants. His Introduction and Dramatis Personae complement the information covered in the interviews (Ban 2011).  

 

References: 

 

Agnati LF, Fuxe K, Zoli M, Zini L, Toffano G, Ferraguti F. A correlation analysis of the regional distribution of central enkephalin and β-endorphin immunoreactive terminals and opiate receptor in adult and old male rats. Evidence of the existence of two main types of communication in the central nervous system: The volume transmission and the wiring transmission. Acta Physiol Scand 1986; 128:  201-7. 

Agranoff BW, Bradley RM, Brady RO. The enzymatic synthesis of inositol phosphatide. J Biol Chem 1958; 233: 1077-83. 

Agranoff BW, Burrell HR, Dokas LA, Springer AD. Progress in biochemical approaches to learning and memory. In: Lipton MA, DiMascio A, Killam KF, editors. Psychopharmacology. A Generation of Progress. New York: Raven Press; 1978. p. 623-35. 

Agranoff BW, Fox MRS. Antagonism of choline and inositol. Nature 1959;183: 1259-60. 

Agranoff BW, Davis RE, Brink JJ. Memory function in goldfish. Proc Natl Acad Sci USA 1965; 54: 788-9. 

Agranoff BW, Davis RE, Casola L, Lim R. Actinomycin D blocks formation of memory of shock-avoidance in goldfish. Science 1967; 158: 1600-1.  

Akil H, Madden J, Patrick RL, Barchas JD. Stress-induced increase in endogenous peptides. Concurrent analgesia and its partial reversal by naloxone. In: Koesterlitz HW, editor. Opiates and Endogenous Opioid Peptides. Amsterdam: Elsevier; 1976. p. 63-70.  

Akil H, Mayer DJ, Liebeskind JC. Antagonism of stimulation–produced analgesia by naloxone, a narcotic antagonist. Science 1976; 191: 961-2  

Akil H, Watson SJ. Neuropeptides in brain and pituitary: Overview. In: Meltzer HY, editor. Psychopharmacology. The Third Generation of Progress. New York: Raven Press; 1987. p. 367-72. 

Anden NE, Carlsson A, Dahlström A, Fuxe K, Hillarp N-Ǻ. Demonstration and mapping of nigrostriatal dopamine neurons. Life Sciences 1964; 2: 623-30. 

Anden NE, Corrodi H, Fuxe K, Hökfelt T. Evidence for central 5-hydroxytryptamine receptor stimulation by lysergic acid diethylamide.  Br J Pharmacol 1968; 34: 1-7.  

Anden NE, Dahlström A, Fuxe K, Larsson K., Olson L, Ungerstedt U.  Ascending monoamine neurons to the telencephalon and diencephalon Acta Physiologica Scandinavica 1966; 67: 31-26. 

Ban TA. Preface. In: Ban TA, editor. An Oral History of Neuropsychopharmacology The First Fifty Years. Peer Interviews. Volume Three (Sulser F, editor: Neuropharmacology). Budapest: Animula; 2011, p. IX –XX. 

Barchas JD, Tatemoto K, Faull KM, Evans CJ, Valentino KL, Eberwine JH. The search for neuropeptides. In: Meltzer HY, editor. Psychopharmacology. The Third Generation of Progress. New York: Raven Press; 1987. p. 437-48. 

Barondes SH. Effects of inhibitors of cerebral protein synthesis on long term memory. In: Efron DH, editor.  Psychopharmacology. A Review of Progress. 1957-1967. Washington: Government Printing Office (Public Health Service Publications No. 1836); 1968. p. 905-8. 

Barondes SH. Soluble lectins: a new class of extracellular proteins. Science 1984; 223: 1259-64.  

Barondes SH, Castronovo V, Cooper DNW. Galactins: a family of animal β- galactoside-binding lectins. Cell 1994; 76: 597-8. 

Barondes SH, Cohen HD. Puromycin effect on successive phases of memory storage. Science 1966; 151: 596-7. 

Barondes SH, Cohen HD. Comparative effects of cycloheximide and puromycin on cerebral protein synthesis and consolidation of memory in mice. Brain Res 1967; 4: 44-5 

Barondes SH, Jarvik ME. The influence of actinomycin-D on brain RNA synthesis and on memory. Journal of Neurochemistry 1964; 11: 187-95.  

Benmansour S, Cecchi M, Morilak DA, Gerhardt GA, Javors MA, Gould GG, Frazer A. Effects of chronic antidepressant treatment on serotonin transporter function, density and mRNA level. The Journal of Neuroscience 1999; 19: 10494-59. 

Benmansour S, Pietrowski JP, Altamarino AV, Frazer A. Impact of  ovarian hormone on the modulation  of the serotonin transporter by fluvoxamine. Neuropsychopharmacology 2009; 34: 55-64.  

Berger FM. The pharmacological properties of 2-methyl-2-n-propyl-1-3-propanediol dicarbamate (Miltown), a new interneuronal blocking agent.  J Pharmacol  Exp Ther 1954;  112:  413-23.  

Berger FM. Meprobamate and other glycol derivatives. In: Usdin E, Forrest IS, editors. Psychotherapeutic Drugs. Volume 2. New York/Basel: Marcel Dekker Inc; 1977. p. 1089-100. 

Berger FM. As I remember. In Ban TA, Healy D, Shorter E, editors.  The Rise of Psychopharmacology and the Story of CINP. Budapest: Animula; 1998. p. 59-62. 

Berger FM, Bradley W.  The pharmacological properties of  α-β-γ- (2methylphenyloxi) propane. (myanesin).  Br J Pharmacol  1946;  1: 265-72.  

Blackshear MA, Steranka LR, Sanders-Bush E. Multiple serotonin receptors: regional distribution  and effect of raphe lesion. Eur J Pharmacol 1981; 76: 325-34.  

Boarder MR, Evans C, Adams M, Erdelyi E, Barchas JD. Peptide E and its products, BAM-18 and leuenkephalin in bovine adrenal medulla and cultured chromaffin cells: release in response to stimulation. Journal of Neurochemistry 1987; 49: 1824-32.  

Costa E, Garattini S, Valzelli L. Interaction between reserpine, chlorpromazine and imipramine. Experientia 1960; 15: 461-3. 

Dahlström A. The intraneuronal distribution of noradrenalin and the transport  and life-span of amine storage granules in the sympathetic adrenergic neuron. Naunyn Schmiedeberg’s Archives of Pharmacology 1966; 257: 93-115.   

Dahlström A. Axoplasmic transport with particular respect to adrenergic neurons. Phil Trans Roy Soc Lond B 1971; 261: 325-58.  

Dahlström A, Fuxe K. Evidence for the existence of monoamine containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand 1964; 62 (Supplement 232): S1-S55.   

Dahlström A, Fuxe K. Evidence for the existence of monoamine neurons in the central nervous system. II.  Experimentally-induced changes in the intraneuronal amine levels of bulbospinal neuron systems. Acta Physiol Scand 1965; 64 (Supplement 247): 1-36.     

Dingell JV, Sulser F, Gillette JR. Metabolism of imipramine  in rats and rabbits. Fed Proc 1962; 21: 184-5. 

Dingell, JV, Sulser F, Gillette JR. Species differences in the metabolism of imipramine and desmethylimipramine. The Journal of Pharmacology and Experimental Therapeutics 1964; 143: 14-22. 

Dingledine R, Iversen LL, Breuker E. Naloxone as a GABA antagonist. Evidence from iontophoretic receptor binding and convulsant studies. European Journal of Pharmacology 1976; 47: 19-27. 

Enna SJ, Möller H-J. γ-aminobutyric acid (GABA) receptors and their association with benzodiazepine recognition sites. In: Meltzer HY, editor. Psychopharmacology. The Third Generation of Progress. New York: Raven Press; 1987. p. 265-72. 

Falck B, Hillarp N-Ǻ, Thieme G, Torp A. Fluorescence of catecholamines and related compounds condensed with formaldehyde. J Histochem Cytochem 1962; 10: 348-54. 

Fernstrom JD, Wurtman RJ.  Brain serotonin content: physiological dependence on plasma tryptophan levels. Science 1971; 173: 149-52.  

Fernstrom JD, Wurtman RJ. Brain serotonin content: increase following ingestion  of carbohydrate diet. Science 1972; 174: 1023-5. 

Flood JF, Jarvik ME, Bennette EL, Orme AE, Rosenzweig MR. Protein synthesis inhibition and memory for pole jump active avoidance  and extinction. Pharmacology, Biochemistry and Behavior 1977; 7: 71-7. 

Fuxe K. Our neuroscience: The way it was in the 1980s. In: Ban TA, Healy D, Shorter E, editors. From Psychopharmacology to Neuropsychopharmacology in the 1980s and The Story of CINP As Told In Autobiography. Budapest: Animula; 2002. p. 43-8. 

Fuxe K, Agnati L. The neurotransmitter era in neuropsychopharmacology in perspective. In: Ban TA, Ucha Udabe R, editor. The Neurotransmitter Era in Neuropsychopharmacology. Buenos Aires: Polemos; 2006.p. 219-46. 

Fuxe K, Agnati LF, Benfenati  F, Celani MF, Zini  I, Zoli  M, Mutt V.  Evidence for the existence of receptor-receptor interactions in the central nervous system. Studies on the regulation  of the monoamine receptors by peptides. J Neurol Transmission 1983; 18: 115-79.  

Gianutsos G, Lal H. Blockade of apomorphine-induced aggression by morphine or neuroleptics. Differential alteration by antimuscarinics and naloxone. Pharmacology, Biochemistry and Behavior 1976; 4: 639-42.  

Gilette JR, Dingell JV, Sulser F, Kuntzman R, Brodie BB. Isolation from rat brain of a metabolic product desmethylimipramine (DM) G35020, a metabolite of imipramine. Psychopharmacologia 1961; 19: 467-74.  

Hammer DW, Skolnick P, Paul SM. The benzodiazepine/GABA receptor complex in anxiety. In: Meltzer HY, editor. Psychopharmacology. The Third Generation of Progress. New York: Raven Press; 1987. p. 977-84. 

Iversen LL. Chemical messengers in the brain. Trends in Neurosciences 1978; 1: 15-6. 

Iversen LL, Jessell TM, Kanazawa J. Release and metabolism of Substance P in rat hypothalamus. Nature (Lond) 1976; 264: 81-3. 

Iversen LL, Mitchell JF, Srinivasan V. The release of γ-aminobutyric acid during inhibition in the rat visual cortex. J Physiol 1971; 212: 619-24. 

Iversen LL, Neel MJ. The uptake of [3H] GABA by slices of rat cerebral cortex. J Neurochem 1968; 15: 1141-9. 

Jaffe JH, Jarvik ME. Tobacco use and tobacco use disorders. In: Lipton M, DiMascio A, Killam FK, editors. Psychopharmacology.  A Generation of Progress. New York; Raven Press; 1978. p. 1665-76. 

Jarvik ME, Caskey NH, Wirshing WC, Madsen DC, Iwamoto-Schaap L, Elins JJ. Bromocriptine reduces cigarette smoking. Addiction 2000; 95: 1173-83. 

Jung M, Lal H, Gatch M. The discriminant stimulus effects of pentylenetetrazol as a model of anxiety: recent development. Neurosci Biobehav Rev 2002; 26: 428-39.  

Kandel ER. The molecular biology of memory storage: A dialogue between genes and synapses. Science 2001; 294: 103-8. 

Kandel E. In Search of Memory. The Emergence of a New Science of Mind. New York: WW. Norton & Company; 2007. p.165-318. 

Karen TJ, Walters ET, Kandel ER. Classical conditioning in a simple withdrawal reflex in Aplysia Californica. Journal of Neuroscience 1981; 1:  1426-37.  

Lal H, Shearman GT. Attenuation of chemically-induced anxiogenic stimuli, a novel method for evaluating anxiolytic drugs: a comparison of clobazam with other benzodiazepines. Drug Development Research 1982; 2:  127-34.  

Lu  XY, Kim CS, Frazer A, Zhang W. Leptin, a potential novel antidepressant. Proc Natl Acad Sci USA 2006; 103: 1593-8. 

Manier DH, Shelton R, Sulser F. Noradrenergic antidepressants: does chronic treatment increase or decrease CREB-P? J Neurol Transm 2002; 109: 91-9. 

Marcucci F, Fanelli R, Mussi E, Garattini S. Further studies on the long-lasting antimetrazol activity of diazepam in mice. European Journal of Pharmacology 1970; 11: 115-6. 

Ordway GA, Gambrana C, Frazer A. Quantitative autoradiography of central β-adrenoreceptor subtypes: comparison of effects of chronic treatment with desipramine or centrally administered l-isoproterenol. The Journal of Pharmacology 1988; 247: 379-89. 

Osuka M, Iversen LL, Hall ZW, Kavitz EA, Release of GABA from inhibitory nerves of lobster. Proc Natl Acad Sci USA1966; 56: 110-5. 

Paul SM, Purdy RH Neuroactive steroids, FASEB J 1992; 6: 2311-22. 

Paul SM, Rehavi M, Rice KC, Ittah Y, Skolnick P. Does high affinity [3H] binding label serotonin reuptake sites in brain and platelet. Life Science 1981; 28: 2753-60. 

Pert CB, Hill JM, Ruff MR, Berman RM, Robey WG. Octapeptides deduced from the neuropeptide receptor-like pattern of antigen T4 in brain potently inhibit human immunodeficiency virus receptor binding and T-cell infectivity. Proc Natl Acad Sci USA 1986; 83: 9254-8. 

Pert C, Kuhar MJ, Snyder SH. Opiate receptor: localization in rat brain. Proc Natl Acad Sci USA 1976; 73: 3729-33.  

Pert C, Snyder SH. Opiate receptor: demonstration in nervous issue. Science 1973; 179: 1011-4. 

Puia G, Santi M, Vicini S, Pritchett DB, Purdy RH, Paul SH, Seeburg PH, Costa E. Neurosteroids act on recombinant GABA receptors. Neuron 1990; 4: 759-65. 

Sanders-Bush E, Conn PJ. Neurochemistry of serotonin neuronal system: consequences of serotonin receptor activation. In: Meltzer HY, editor. Psychopharmacology. The Third Generation of Progress. New York: Raven Press; 1987. p. 95-104. 

Sanders-Bush E, Conn J, Sulser F. The serotonin/norepinephrine - linked β-adrenoreceptor system and the mode of action of antidepressants. Psychopharmacol Bull 1985; 21: 373-8. 

Sands SA, Reisman SA, Enna SJ. Effect of antidepressants on GABA receptor function and subunit expression in rat hippocampus. Biochem Pharmacol 2004; 68: 1489-95. 

Squire R, Barondes SH. Actinomycin D: Effects on memory and differentiation after training. Nature 1970; 225: 649-50. 

Sulser F. My early years with tricyclics. In: Ban TA, Healy D, Shorter E, editors. The Rise of Psychopharmacology and the Story of CINP. Budapest: Animula; 1998. p. 81-3. 

Sulser F. Introduction and dramatis personae. In Sulser F, editor. Neuropharmacology. Volume Six. In: Ban TA, editor. An Oral History of Neuropsychopharmacology The First Fifty Years Peer Interviews). Budapest: Animula; 2011, p. XXXIX –LX. 

Sulser F, Bickel MH, Brodie BB. The action of desmethylimipramine in counteracting sedation  and cholinergic effects  of reserpine-like drugs. J Pharmacol Exp Ther 1964; 144: 321-3. 

Vetulani J, Sulser F. Action of various antidepressant treatments reduces the reactivity of the noradrenergic cyclic AMP–generating system in limbic forebrain. Nature 1975; 257: 495-6. 

Weber E, Esch FS, Bohlen P, Patterson S, Corbett AD, McKnight AT, Kosterlitz HW, Barchas JD, Evans JC. Metorphamide: isolation, structure and biological activity of an amidated octapeptide from bovine brain. Proc Natl Acad Sci USA 1983; 80: 7362-6.  

Weber E, Roth KA, Evans CJ, Chang J-K, Barchas JD. Immunohistochemical localization of dynorphin (1-8) in hypothalamic magnocellular neurons: Evidence for absence of proenkephalin. Life Sciences 1982; 31: 1761-4.   

Wurtman RJ. Melatonin as a hormone in human: A history. The Yale Journal of Biology and Medicine 1985. 58: 547-52.   

Wurtman RJ, Axelrod J. A 24-hour rhythm in the content of norepinephrine in the pineal and salivary glands of the rat. Life Sci 1966; 5: 665-9. 

Wurtman RJ, Axelrod J, Fisher JA. Melatonin synthesis in the pineal gland: effect of light mediated by sympathetic nervous system. Science 1964; 143: 1328-9. 

 

November 8, 2018